Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States.
Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.
Am J Physiol Lung Cell Mol Physiol. 2024 Apr 1;326(4):L440-L457. doi: 10.1152/ajplung.00273.2023. Epub 2023 Dec 27.
We assessed the mechanisms by which nonencapsulated heme, released in the plasma of mice after exposure to chlorine (Cl) gas, resulted in the initiation and propagation of acute lung injury. We exposed adult male and female C57BL/6 mice to Cl (500 ppm for 30 min), returned them to room air, and injected them intramuscularly with either human hemopexin (hHPX; 5 µg/g BW in 50-µL saline) or vehicle at 1 h post-exposure. Upon return to room air, Cl-exposed mice, injected with vehicle, developed respiratory acidosis, increased concentrations of plasma proteins in the alveolar space, lung mitochondrial DNA injury, increased levels of free plasma heme, and major alterations of their lung proteome. hHPX injection mice mitigated the onset and development of lung and mitochondrial injury and the increase of plasma heme, reversed the Cl-induced changes in 83 of 237 proteins in the lung proteome at 24 h post-exposure, and improved survival at 15 days post-exposure. Systems biology analysis of the lung global proteomics data showed that hHPX reversed changes in a number of key pathways including elF2 signaling, verified by Western blotting measurements. Recombinant human hemopexin, generated in tobacco plants, injected at 1 h post-Cl exposure, was equally effective in reversing acute lung and mtDNA injury. The results of this study offer new insights as to the mechanisms by which exposure to Cl results in acute lung injury and the therapeutic effects of hemopexin. Herein, we demonstrate that exposure of mice to chlorine gas causes significant changes in the lung proteome 24 h post-exposure. Systems biology analysis of the proteomic data is consistent with damage to mitochondria and activation of eIF2, the master regulator of transcription and protein translation. Post-exposure injection of hemopexin, which scavenges free heme, attenuated mtDNA injury, eIF2α phosphorylation, decreased lung injury, and increased survival.
我们评估了在接触氯气(Cl)气体后,血浆中非包裹血红素的释放如何引发和传播急性肺损伤。我们使成年雄性和雌性 C57BL/6 小鼠暴露于 Cl(30 分钟内 500 ppm),然后将它们放回室内空气,并在暴露后 1 小时内通过肌肉注射给予人血色素结合蛋白(hHPX;5 µg/g BW 在 50 µL 盐水中)或载体。返回室内空气后,注射载体的 Cl 暴露小鼠发生呼吸性酸中毒、肺泡空间中血浆蛋白浓度增加、肺线粒体 DNA 损伤、游离血浆血红素水平升高以及肺蛋白质组的主要改变。hHPX 注射可减轻肺和线粒体损伤以及血浆血红素升高的发生和发展,逆转暴露后 24 小时肺蛋白质组中 237 种蛋白质中的 83 种的 Cl 诱导变化,并改善暴露后 15 天的存活率。肺全局蛋白质组学数据的系统生物学分析表明,hHPX 逆转了一些关键途径的变化,包括 elF2 信号,这通过 Western 印迹测量得到了验证。在 Cl 暴露后 1 小时内注射的在烟草植物中产生的重组人血色素结合蛋白同样有效地逆转急性肺和 mtDNA 损伤。这项研究的结果提供了有关暴露于 Cl 导致急性肺损伤的机制以及血色素结合蛋白的治疗效果的新见解。在这里,我们证明暴露于氯气会导致暴露后 24 小时小鼠肺部蛋白质组发生重大变化。蛋白质组学数据的系统生物学分析与线粒体损伤和 eIF2 的激活一致,eIF2 是转录和蛋白质翻译的主要调节剂。暴露后注射血红素结合蛋白可清除游离血红素,减轻 mtDNA 损伤、eIF2α 磷酸化、降低肺损伤和提高存活率。