College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China.
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
J Sci Food Agric. 2024 Apr;104(6):3570-3584. doi: 10.1002/jsfa.13241. Epub 2024 Jan 20.
Tea pests pose a significant threat to tea leaf yield and quality, necessitating fast and accurate detection methods to improve pest control efficiency and reduce economic losses for tea farmers. However, in real tea gardens, some tea pests are small in size and easily camouflaged by complex backgrounds, making it challenging for farmers to promptly and accurately identify them.
To address this issue, we propose a real-time detection method based on TP-YOLOX for monitoring tea pests in complex backgrounds. Our approach incorporates the CSBLayer module, which combines convolution and multi-head self-attention mechanisms, to capture global contextual information from images and expand the network's perception field. Additionally, we integrate an efficient multi-scale attention module to enhance the model's ability to perceive fine details in small targets. To expedite model convergence and improve the precision of target localization, we employ the SIOU loss function as the bounding box regression function. Experimental results demonstrate that TP-YOLOX achieves a significant performance improvement with a relatively small additional computational cost (0.98 floating-point operations), resulting in a 4.50% increase in mean average precision (mAP) compared to the original YOLOX-s. When compared with existing object detection algorithms, TP-YOLOX outperforms them in terms of mAP performance. Moreover, the proposed method achieves a frame rate of 82.66 frames per second, meeting real-time requirements.
TP-YOLOX emerges as a proficient solution, capable of accurately and swiftly identifying tea pests amidst the complex backgrounds of tea gardens. This contribution not only offers valuable insights for tea pest monitoring but also serves as a reference for achieving precise pest control. © 2023 Society of Chemical Industry.
茶虫对茶叶的产量和质量构成了重大威胁,因此需要快速准确的检测方法来提高害虫防治效率,减少茶农的经济损失。然而,在实际茶园中,一些茶虫体型较小,容易被复杂的背景所伪装,这使得农民难以及时准确地识别它们。
为了解决这个问题,我们提出了一种基于 TP-YOLOX 的实时检测方法,用于监测复杂背景下的茶虫。我们的方法结合了 CSBLayer 模块,该模块结合了卷积和多头自注意力机制,从图像中捕获全局上下文信息,并扩展网络的感知范围。此外,我们还集成了高效的多尺度注意力模块,以增强模型对小目标精细细节的感知能力。为了加快模型收敛速度并提高目标定位的精度,我们采用 SIOU 损失函数作为边界框回归函数。实验结果表明,与原始的 YOLOX-s 相比,TP-YOLOX 在相对较小的额外计算成本(0.98 浮点运算)下实现了显著的性能提升,平均精度(mAP)提高了 4.50%。与现有的目标检测算法相比,TP-YOLOX 在 mAP 性能方面表现更优。此外,所提出的方法实现了 82.66 帧/秒的帧率,满足实时要求。
TP-YOLOX 是一种高效的解决方案,能够在茶园复杂的背景下准确快速地识别茶虫。这一贡献不仅为茶虫监测提供了有价值的思路,也为实现精确的害虫防治提供了参考。 © 2023 化学工业协会。