Suppr超能文献

基于改进的 MobileNeXt 的 YOLOv7 模型的茶叶病害分类与识别。

Classification and identification of tea diseases based on improved YOLOv7 model of MobileNeXt.

机构信息

College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, 650201, China.

College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China.

出版信息

Sci Rep. 2024 May 23;14(1):11799. doi: 10.1038/s41598-024-62451-y.

Abstract

To address the issues of low accuracy and slow response speed in tea disease classification and identification, an improved YOLOv7 lightweight model was proposed in this study. The lightweight MobileNeXt was used as the backbone network to reduce computational load and enhance efficiency. Additionally, a dual-layer routing attention mechanism was introduced to enhance the model's ability to capture crucial details and textures in disease images, thereby improving accuracy. The SIoU loss function was employed to mitigate missed and erroneous judgments, resulting in improved recognition amidst complex image backgrounds.The revised model achieved precision, recall, and average precision of 93.5%, 89.9%, and 92.1%, respectively, representing increases of 4.5%, 1.9%, and 2.6% over the original model. Furthermore, the model's volum was reduced by 24.69M, the total param was reduced by 12.88M, while detection speed was increased by 24.41 frames per second. This enhanced model efficiently and accurately identifies tea disease types, offering the benefits of lower parameter count and faster detection, thereby establishing a robust foundation for tea disease monitoring and prevention efforts.

摘要

为解决茶叶病害分类识别中准确率低、响应速度慢的问题,本研究提出了一种改进的 YOLOv7 轻量化模型。该模型使用轻量化的 MobileNeXt 作为骨干网络,以降低计算负荷并提高效率。此外,引入了双层路由注意力机制,以增强模型捕捉病害图像中关键细节和纹理的能力,从而提高准确性。采用 SIoU 损失函数来减轻漏检和误检的情况,从而在复杂图像背景下实现更好的识别效果。经改进后的模型在准确率、召回率和平均精度方面分别达到了 93.5%、89.9%和 92.1%,相较于原始模型分别提高了 4.5%、1.9%和 2.6%。此外,模型的体积减少了 24.69M,总参数量减少了 12.88M,检测速度提高了 24.41 帧/秒。该增强模型能够高效准确地识别茶叶病害类型,具有参数量低、检测速度快的优势,为茶叶病害监测和防治工作奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b117/11116536/ecacb3880f3c/41598_2024_62451_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验