Suppr超能文献

端封喹喔啉核心的非富勒烯受体材料的工程化,以提高功率转换效率。

End-capped engineering of Quinoxaline core-based non-fullerene acceptor materials with improved power conversion efficiency.

机构信息

Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.

Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32028, Bahrain.

出版信息

J Mol Graph Model. 2024 Mar;127:108699. doi: 10.1016/j.jmgm.2023.108699. Epub 2023 Dec 23.

Abstract

Improving the light-harvesting efficiency and boosting open circuit voltage are crucial challenges for enhancing the efficiency of organic solar cells. This work introduces seven new molecules (SA1-SA7) to upgrade the optoelectronic and photovoltaic properties of Q-C-F molecule-based solar cells. All recently designed molecules have the same alkyl-substituted Quinoxaline core and CPDT donor but vary in the end-capped acceptor subunits. All the investigated molecules have revealed superior properties than the model (R) by having absorbance ranging from 681 nm to 782 nm in the gaseous medium while 726 nm-861 nm in chloroform solvent, with the lowest band gap ranging from 1.91 to 2.19 eV SA1 molecule demonstrated the highest λ (861 nm) in chloroform solvent and the lowest band gap (1.91 eV). SA2 molecule has manifested highest dipole moment (4.5089 D), lower exciton binding energy in gaseous (0.33 eV) and chloroform solvent (0.47 eV), and lower charge mobility of hole (0.0077693) and electron (0.0042470). At the same time, SA7 showed the highest open circuit voltage (1.56 eV) and fill factor (0.9166) due to solid electron-pulling acceptor moieties. From these supportive outcomes, it is inferred that our computationally investigated molecules may be promising candidates to be used in advanced versions of OSCs in the upcoming period.

摘要

提高光捕获效率和开路电压是提高有机太阳能电池效率的关键挑战。本工作引入了七个新分子(SA1-SA7),以提升基于 Q-C-F 分子的太阳能电池的光电性能。所有新设计的分子都具有相同的烷基取代喹喔啉核心和 CPDT 供体,但末端封端受体单元不同。所有研究的分子都具有比模型(R)更好的性能,在气态介质中吸收范围为 681nm 至 782nm,在氯仿溶剂中为 726nm-861nm,最低能带隙范围为 1.91 至 2.19eV。SA1 分子在氯仿溶剂中表现出最高的 λ(861nm)和最低的能带隙(1.91eV)。SA2 分子表现出最高的偶极矩(4.5089 D)、气态(0.33eV)和氯仿溶剂(0.47eV)中较低的激子结合能,以及空穴(0.0077693)和电子(0.0042470)较低的电荷迁移率。同时,SA7 由于具有固态拉电子受体部分,表现出最高的开路电压(1.56eV)和填充因子(0.9166)。从这些支持性结果可以推断,我们计算研究的分子可能是未来一段时间内用于先进版本 OSCs 的有前途的候选物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验