Suppr超能文献

基于可穿戴设备的急性心力衰竭患者夜间呼吸模式定量分析的探索性研究

[Exploratory study on quantitative analysis of nocturnal breathing patterns in patients with acute heart failure based on wearable devices].

作者信息

Li Mengwei, Kang Yu, Kou Yuqing, Zhao Shuanglin, Zhang Xiu, Qiu Lirui, Yan Wei, Yu Pengming, Zhang Qing, Zhang Zhengbo

机构信息

Medical School of Chinese PLA, Beijing 100853, P. R. China.

Center for Artificial Intelligence in Medicine, Chinese PLA General Hospital, Beijing 100853, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1108-1116. doi: 10.7507/1001-5515.202310015.

Abstract

Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min (15.95 ± 3.08) beat/min, < 0.001], and larger R_RSBI_cv [70.96% (54.34%-104.28)% 58.48% (45.34%-65.95)%, = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% (17.10 ± 6.83)%, = 0.004], and smaller SampEn (0.67 ± 0.37 1.01 ± 0.29, < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.

摘要

急性心力衰竭(AHF)患者常出现呼吸困难,监测并量化其呼吸模式可为疾病及预后评估提供参考信息。本研究纳入了39例AHF患者和24名健康受试者。使用可穿戴设备收集夜间胸腹呼吸信号,并对两组夜间呼吸模式的差异进行定量分析。与健康组相比,AHF组的平均呼吸频率(BR_mean)更高[(21.03±3.84)次/分钟 (15.95±3.08)次/分钟,<0.001],R_RSBI_cv更大[70.96%(54.34%-104.28)% 58.48%(45.34%-65.95)%,=0.005],AB_ratio_cv更大[(22.52±7.14)% (17.10±6.83)%,=0.004],样本熵(SampEn)更小(0.67±0.37 1.01±0.29,<0.001)。此外,平均吸气时间(TI_mean)和呼气时间(TE_mean)更短,TI_cv和TE_cv更大。此外,AHF组的LBI_cv更大,而庞加莱图上的SD1和SD2更大,所有这些均显示出统计学显著差异。逻辑回归校准显示,TI_mean降低是AHF的一个危险因素。BR_mean区分两组的能力最强,曲线下面积(AUC)为0.846。呼吸周期、幅度、协调性和非线性参数等指标可有效量化AHF患者的异常呼吸模式。具体而言,TI_mean降低是AHF的危险因素,而BR_mean可区分两组。这些发现有可能为AHF患者的评估提供新信息。

相似文献

1
[Exploratory study on quantitative analysis of nocturnal breathing patterns in patients with acute heart failure based on wearable devices].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1108-1116. doi: 10.7507/1001-5515.202310015.
2
[Quantitative analysis of breathing patterns based on wearable systems].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):893-902. doi: 10.7507/1001-5515.202004047.
3
Day vs night: Does time of presentation matter in acute heart failure? A secondary analysis from the RELAX-AHF trial.
Am Heart J. 2017 May;187:62-69. doi: 10.1016/j.ahj.2017.02.024. Epub 2017 Feb 22.
4
8
Circulating miR-30d Predicts Survival in Patients with Acute Heart Failure.
Cell Physiol Biochem. 2017;41(3):865-874. doi: 10.1159/000459899. Epub 2017 Feb 16.

本文引用的文献

1
Remote Monitoring for Heart Failure Management at Home.
J Am Coll Cardiol. 2023 Jun 13;81(23):2272-2291. doi: 10.1016/j.jacc.2023.04.010.
2
Passive longitudinal weight and cardiopulmonary monitoring in the home bed.
Sci Rep. 2021 Dec 21;11(1):24376. doi: 10.1038/s41598-021-03105-1.
3
Early Detection of Worsening Heart Failure in Patients at Home Using a New Telemonitoring System of Respiratory Stability.
Circ J. 2022 Jun 24;86(7):1081-1091. doi: 10.1253/circj.CJ-21-0590. Epub 2021 Dec 11.
4
[Quantitative analysis of breathing patterns based on wearable systems].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):893-902. doi: 10.7507/1001-5515.202004047.
5
Enhanced Breathing Pattern Detection during Running Using Wearable Sensors.
Sensors (Basel). 2021 Aug 20;21(16):5606. doi: 10.3390/s21165606.
7
Breathing variability-implications for anaesthesiology and intensive care.
Crit Care. 2021 Aug 5;25(1):280. doi: 10.1186/s13054-021-03716-0.
8
Comparison of Dyspnea Measurement Instruments in Acute Heart Failure: The DYSPNEA-AHF Pilot Study.
J Card Fail. 2021 May;27(5):607-609. doi: 10.1016/j.cardfail.2020.10.004. Epub 2020 Oct 20.
9
Usefulness of heart rhythm complexity in heart failure detection and diagnosis.
Sci Rep. 2020 Sep 10;10(1):14916. doi: 10.1038/s41598-020-71909-8.
10
Detection of Abnormal Respiration from Multiple-Input Respiratory Signals.
Sensors (Basel). 2020 May 24;20(10):2977. doi: 10.3390/s20102977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验