Huang Linyun, Bae Youngchul, Weng Min-Hang
Putian University, Fujian, China.
Chonnam National University. Yeosu, Jeonnam, Korea.
Nonlinear Dynamics Psychol Life Sci. 2024 Jan;28(1):55-70.
In this paper, we focus on the nonlinear dynamic behavior of fractional order love model because the fractional order can reflect the 'memory dependency' of certain dynamic processes to a certain extent. The novel fractional order love model without external environment effect investigates two aspects: first, the chaotic dynamic of the used system when the system order is 2, and second, the smallest system order of fractional order love model that can generate chaotic behaviors. The simulation results show the fractional order love model can produce different results compared to the integer order model. While the fractional order love model still has chaotic behavior even the sum of the system order is equal to 2. Moreover, the smallest system order of fractional order love model having chaotic behavior is 1.7. The results indicate that two individuals can display love status even if the sum of the system order is less than 2 because the 'memory dependency' effects can greatly affect the emotional changes of human beings. The simulation results based on time series, phase portrait, power spectrum, Poincare map, maximal Lyapunov exponent and bifurcation diagram, and the conclusion is applied to the real life are also discussed.
在本文中,我们聚焦于分数阶爱情模型的非线性动力学行为,因为分数阶在一定程度上能够反映某些动态过程的“记忆依赖性”。新型的无外部环境影响的分数阶爱情模型研究了两个方面:其一,当系统阶数为2时所用系统的混沌动力学;其二,能够产生混沌行为的分数阶爱情模型的最小系统阶数。仿真结果表明,与整数阶模型相比,分数阶爱情模型能够产生不同的结果。即便系统阶数之和等于2,分数阶爱情模型仍具有混沌行为。此外,具有混沌行为的分数阶爱情模型的最小系统阶数为1.7。结果表明,即使系统阶数之和小于2,两个人仍能展现爱情状态,因为“记忆依赖性”效应会极大地影响人类的情绪变化。还讨论了基于时间序列、相图、功率谱、庞加莱映射、最大李雅普诺夫指数和分岔图的仿真结果,以及该结论在现实生活中的应用。