Suppr超能文献

分阶量子受迫陀螺模型及其离散动力学行为。

Fractional-order quantum kicked top map and its discrete dynamic behaviors.

机构信息

College of Science, Northwest A&F University, Yangling District, Xianyang, Shaanxi 712100, People's Republic of China.

Department of Mathematics, Shanghai University, Shanghai 200444, People's Republic of China.

出版信息

Chaos. 2023 Jan;33(1):013133. doi: 10.1063/5.0131776.

Abstract

A kind of top with a fractional operator is discussed in this paper. The top has a periodic nonlinear pulse kick sequence in the magnetic field and constant precessing around the magnetic field. Then, a fractional quantum kicked top map based on the Caputo derivative is proposed. The numerical solutions of the fractional difference equation are obtained, and the chaotic behavior is observed numerically in three aspects. Fractional quantum dynamics behaviors take place in a finite dimensional Hilbert space where the squared angular momentum is free precession. Finally, the dynamic behaviors of the fractional quantum kicked top map are systematically analyzed by using the bifurcation diagram, the phase diagram, and the maximum Lyapunov exponent.

摘要

本文讨论了一种具有分式算符的顶。该顶在磁场中具有周期性非线性脉冲踢序列,并在磁场周围恒定进动。然后,提出了一种基于 Caputo 导数的分数量子踢顶映射。得到了分数差分方程的数值解,并从三个方面数值上观察了混沌行为。分数量子动力学行为发生在平方角动量自由进动的有限维 Hilbert 空间中。最后,利用分岔图、相图和最大李雅普诺夫指数对分数量子踢顶映射的动力学行为进行了系统分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验