Suppr超能文献

《系统发育树拓扑推断中恒定速率 Birth-Death 先验的局限性》。

The Limits of the Constant-rate Birth-Death Prior for Phylogenetic Tree Topology Inference.

机构信息

Section of Epidemiology, Department of Public Health, University of Copenhagen, 1352 Copenhagen, Denmark.

Department of Statistics, University of Oxford, OX1 3LB, Oxford, UK.

出版信息

Syst Biol. 2024 May 27;73(1):235-246. doi: 10.1093/sysbio/syad075.

Abstract

Birth-death models are stochastic processes describing speciation and extinction through time and across taxa and are widely used in biology for inference of evolutionary timescales. Previous research has highlighted how the expected trees under the constant-rate birth-death (crBD) model tend to differ from empirical trees, for example, with respect to the amount of phylogenetic imbalance. However, our understanding of how trees differ between the crBD model and the signal in empirical data remains incomplete. In this Point of View, we aim to expose the degree to which the crBD model differs from empirically inferred phylogenies and test the limits of the model in practice. Using a wide range of topology indices to compare crBD expectations against a comprehensive dataset of 1189 empirically estimated trees, we confirm that crBD model trees frequently differ topologically compared with empirical trees. To place this in the context of standard practice in the field, we conducted a meta-analysis for a subset of the empirical studies. When comparing studies that used Bayesian methods and crBD priors with those that used other non-crBD priors and non-Bayesian methods (i.e., maximum likelihood methods), we do not find any significant differences in tree topology inferences. To scrutinize this finding for the case of highly imbalanced trees, we selected the 100 trees with the greatest imbalance from our dataset, simulated sequence data for these tree topologies under various evolutionary rates, and re-inferred the trees under maximum likelihood and using the crBD model in a Bayesian setting. We find that when the substitution rate is low, the crBD prior results in overly balanced trees, but the tendency is negligible when substitution rates are sufficiently high. Overall, our findings demonstrate the general robustness of crBD priors across a broad range of phylogenetic inference scenarios but also highlight that empirically observed phylogenetic imbalance is highly improbable under the crBD model, leading to systematic bias in data sets with limited information content.

摘要

birth-death 模型是一种随机过程,通过时间和分类单元来描述物种形成和灭绝,并广泛应用于生物学中,以推断进化时间尺度。先前的研究强调了恒定速率 birth-death(crBD)模型下的预期树如何与经验树不同,例如,在系统发育不平衡的程度上。然而,我们对 crBD 模型与经验数据中的信号之间的树差异的理解仍然不完整。在本观点中,我们旨在揭示 crBD 模型与经验推断的系统发育树之间的差异程度,并检验该模型在实践中的局限性。我们使用广泛的拓扑指数来比较 crBD 期望与 1189 个经验估计树的综合数据集,确认 crBD 模型树在拓扑上经常与经验树不同。为了将这一点置于该领域标准实践的背景下,我们对经验研究的一个子集进行了荟萃分析。当比较使用贝叶斯方法和 crBD 先验的研究与使用其他非 crBD 先验和非贝叶斯方法(即最大似然方法)的研究时,我们没有发现树拓扑推断存在任何显著差异。为了详细研究高度不平衡树的情况,我们从数据集中选择了 100 棵具有最大不平衡性的树,在各种进化速率下模拟这些树拓扑的序列数据,并在最大似然下重新推断这些树,以及在贝叶斯设置下使用 crBD 模型。我们发现,当替代率较低时,crBD 先验会导致过度平衡的树,但当替代率足够高时,这种趋势可以忽略不计。总的来说,我们的研究结果表明,crBD 先验在广泛的系统发育推断场景中具有普遍的稳健性,但也强调了在 crBD 模型下观察到的系统发育不平衡是高度不可能的,这导致信息量有限的数据集中存在系统偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffbc/11129600/ed658bfd4b1f/syad075_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验