Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America.
Departiment of Biology, Tennessee Technological University, Cookeville, TN, United States of America.
PLoS One. 2023 Dec 28;18(12):e0287943. doi: 10.1371/journal.pone.0287943. eCollection 2023.
Since industrialization began, atmospheric CO2 ([CO2]) has increased from 270 to 415 ppm and is projected to reach 800-1000 ppm this century. Some Arabidopsis thaliana (Arabidopsis) genotypes delayed flowering in elevated [CO2] relative to current [CO2], while others showed no change or accelerations. To predict genotype-specific flowering behaviors, we must understand the mechanisms driving flowering response to rising [CO2]. [CO2] changes alter photosynthesis and carbohydrates in plants. Plants sense carbohydrate levels, and exogenous carbohydrate application influences flowering time and flowering transcript levels. We asked how organismal changes in carbohydrates and transcription correlate with changes in flowering time under elevated [CO2]. We used a genotype (SG) of Arabidopsis that was selected for high fitness at elevated [CO2] (700 ppm). SG delays flowering under elevated [CO2] (700 ppm) relative to current [CO2] (400 ppm). We compared SG to a closely related control genotype (CG) that shows no [CO2]-induced flowering change. We compared metabolomic and transcriptomic profiles in these genotypes at current and elevated [CO2] to assess correlations with flowering in these conditions. While both genotypes altered carbohydrates in response to elevated [CO2], SG had higher levels of sucrose than CG and showed a stronger increase in glucose and fructose in elevated [CO2]. Both genotypes demonstrated transcriptional changes, with CG increasing genes related to fructose 1,6-bisphosphate breakdown, amino acid synthesis, and secondary metabolites; and SG decreasing genes related to starch and sugar metabolism, but increasing genes involved in oligosaccharide production and sugar modifications. Genes associated with flowering regulation within the photoperiod, vernalization, and meristem identity pathways were altered in these genotypes. Elevated [CO2] may alter carbohydrates to influence transcription in both genotypes and delayed flowering in SG. Changes in the oligosaccharide pool may contribute to delayed flowering in SG. This work extends the literature exploring genotypic-specific flowering responses to elevated [CO2].
自工业化开始以来,大气中的二氧化碳(CO2)已从 270ppm 增加到 415ppm,预计本世纪将达到 800-1000ppm。一些拟南芥(Arabidopsis)基因型在升高的 CO2 下相对于当前 CO2 延迟开花,而其他基因型则没有变化或加速开花。为了预测基因型特异性的开花行为,我们必须了解驱动对升高的 CO2 的开花反应的机制。CO2 的变化改变了植物的光合作用和碳水化合物。植物感知碳水化合物水平,外源性碳水化合物的应用会影响开花时间和开花转录水平。我们想知道在升高的 CO2 下,碳水化合物和转录水平的变化与开花时间的变化有何关联。我们使用了一种在升高的 CO2(700ppm)下选择具有高适应性的拟南芥基因型(SG)。SG 在升高的 CO2(700ppm)下相对于当前 CO2(400ppm)延迟开花。我们将 SG 与表现出无 CO2 诱导开花变化的密切相关的对照基因型(CG)进行比较。我们在当前和升高的 CO2 条件下比较了这些基因型的代谢组学和转录组学谱,以评估这些条件下与开花的相关性。虽然两种基因型都对升高的 CO2 做出了碳水化合物的反应,但 SG 的蔗糖水平高于 CG,并且在升高的 CO2 中葡萄糖和果糖的增加更为明显。两种基因型都表现出转录变化,CG 增加了与果糖 1,6-二磷酸分解、氨基酸合成和次生代谢物相关的基因,而 SG 减少了与淀粉和糖代谢相关的基因,但增加了与寡糖产生和糖修饰相关的基因。这些基因型中与光周期、春化和分生组织身份途径相关的开花调节基因发生了改变。升高的 CO2 可能会改变碳水化合物以影响两种基因型的转录,并导致 SG 延迟开花。寡糖库的变化可能有助于 SG 的延迟开花。这项工作扩展了探索升高的 CO2 下基因型特异性开花反应的文献。