Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059, Rostock, Germany.
Chemosphere. 2024 Feb;350:141010. doi: 10.1016/j.chemosphere.2023.141010. Epub 2023 Dec 26.
This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs. Sensitivity analysis revealed that the illumination duration is the primary influencer of TC photodegradation with MOF photocatalysts, while the MOFs' surface area is the second crucial parameter shaping the efficiency and dynamics of the TC-MOF photocatalytic system. The developed LSSVM models display impressive predictive capabilities, effectively forecasting the experimental degradation of TC with high accuracy. Among these models, the GAPSO-LSSVM model excels as the top performer, achieving notable evaluation metrics, including STD, RMSE, MSE, MRE, and R at values of 3.09, 3.42, 11.71, 5.95, and 0.986, respectively. In comparison, the PSO-LSSVM, ICA-LSSVM, and GA-LSSVM models yield mean relative errors of 6.18%, 7.57%, and 11.37%, respectively. These outcomes highlight the exceptional predictive capabilities of the GAPSO-LSSVM model, solidifying its position as the most accurate and dependable model for predicting TC photodegradation in this study. This study contributes to advancing photocatalytic research and effectively reinforces the importance of leveraging machine learning methodologies for tackling environmental challenges.
本研究聚焦于利用连接主义模型,特别是独立成分分析(ICA)、遗传算法(GA)、粒子群优化(PSO)和遗传算法-粒子群优化(GAPSO)与最小二乘支持向量机(LSSVM)相结合,预测金属-有机骨架(MOFs)光催化下四环素(TC)的降解。本研究的主要目的是评估这些连接主义模型在估计 TC 降解效率方面的可行性和精度,特别是在废水处理的背景下。这些模型的输入参数涵盖了 MOF 的关键特性,如孔径和比表面积,以及关键操作因素,如 pH 值、TC 浓度、催化剂用量和光照时间,这些都与 MOFs 的光催化性能有关。敏感性分析表明,光照时间是 MOF 光催化剂降解 TC 的主要影响因素,而 MOF 的比表面积是影响 TC-MOF 光催化系统效率和动力学的第二关键参数。所开发的 LSSVM 模型具有令人印象深刻的预测能力,能够有效地预测实验中 TC 的降解,具有很高的准确性。在这些模型中,GAPSO-LSSVM 模型表现最佳,其评价指标包括 STD、RMSE、MSE、MRE 和 R,分别为 3.09、3.42、11.71、5.95 和 0.986。相比之下,PSO-LSSVM、ICA-LSSVM 和 GA-LSSVM 模型的平均相对误差分别为 6.18%、7.57%和 11.37%。这些结果突出了 GAPSO-LSSVM 模型的出色预测能力,使其成为本研究中预测 TC 光降解最准确和可靠的模型。本研究为光催化研究做出了贡献,并有效地强调了利用机器学习方法应对环境挑战的重要性。