Suppr超能文献

应用机器学习模型提高基于 ZnO 的光催化剂在水中的农药光降解预测。

Application of machine learning models to improve the prediction of pesticide photodegradation in water by ZnO-based photocatalysts.

机构信息

Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.

Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.

出版信息

Chemosphere. 2024 Aug;362:142792. doi: 10.1016/j.chemosphere.2024.142792. Epub 2024 Jul 5.

Abstract

Pesticide pollution has been posing a significant risk to human and ecosystems, and photocatalysis is widely applied for the degradation of pesticides. Machine learning (ML) emerges as a powerful method for modeling complex water treatment processes. For the first time, this study developed novel ML models that improved the estimation of the photocatalytic degradation of various pesticides using ZnO-based photocatalysts. The input parameters encompassed the source of light, mass proportion of dopants to Zn, initial pesticide concentration (C), pH of the solution, catalyst dosage and irradiation time. Additionally, physicochemical properties such as the molecular weight of the dopants and pesticides, as well as the water solubility of both dopants and pesticides, were considered. Notably, the numerical data were extracted from the literature via relevant tables (directly) or graphs (indirectly) using the web-based tool WebPlotDigitizer. Four ML models including multi-layer perceptron artificial neural network (MLP-ANN), particle swarm optimization-adaptive neuro fuzzy inference system (PSO-ANFIS), radial basis function (RBF), and coupled simulated annealing-least squares support vector machine (CSA-LSSVM) were developed. In comparison, RBF showed the best accuracy of modeling among all models, with the highest determination coefficient (R) of 0.978 and average absolute relative deviation (AARD) of 4.80%. RBF model was effective in estimating the photocatalytic degradation of pesticides except for 2-chlorophenol, triclopyr and lambda-cyhalothrin, where CSA-LSSVM model demonstrated superior performance. Dichlorvos was completely degraded by ZnO photocatalyst under visible light. The sensitivity analysis by relevancy factor exhibited that light irradiation time and initial pesticide concentration were the most important parameters influencing photocatalytic degradation of pesticides positively and negatively, respectively. The new ML models provide a powerful tool for predicting pesticide degradation in wastewater treatment, which will reduce photochemical experiments and promote sustainable development.

摘要

农药污染对人类和生态系统构成了重大风险,光催化广泛应用于农药的降解。机器学习 (ML) 已成为建模复杂水处理过程的有力方法。本研究首次开发了新的 ML 模型,这些模型改进了使用基于 ZnO 的光催化剂对各种农药的光催化降解的估计。输入参数包括光源、掺杂剂与 Zn 的质量比例、初始农药浓度 (C)、溶液 pH 值、催化剂用量和辐照时间。此外,还考虑了掺杂剂和农药的分子量以及两者的水溶性等物理化学性质。值得注意的是,数值数据是通过相关表格(直接)或图形(间接)使用基于网络的工具 WebPlotDigitizer 从文献中提取的。开发了包括多层感知器人工神经网络 (MLP-ANN)、粒子群优化-自适应神经模糊推理系统 (PSO-ANFIS)、径向基函数 (RBF) 和耦合模拟退火-最小二乘支持向量机 (CSA-LSSVM) 在内的四种 ML 模型。相比之下,RBF 在所有模型中表现出最佳的建模精度,模型的决定系数 (R) 最高为 0.978,平均绝对相对偏差 (AARD) 为 4.80%。RBF 模型有效地估计了除 2-氯苯酚、三氯吡氧乙酸和氯氟氰菊酯之外的农药的光催化降解,而 CSA-LSSVM 模型表现出更好的性能。敌敌畏在可见光下可被 ZnO 光催化剂完全降解。通过相关性因子进行的敏感性分析表明,光照时间和初始农药浓度是影响农药光催化降解的最重要的参数,分别对其产生正向和负向影响。新的 ML 模型为预测废水处理中的农药降解提供了有力的工具,这将减少光化学实验并促进可持续发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验