Mahajan Mayank, Mondal Bhaskar
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India.
JACS Au. 2023 Dec 8;3(12):3494-3505. doi: 10.1021/jacsau.3c00670. eCollection 2023 Dec 25.
Detailed electronic structure and its correlation with the intramolecular C-H amination reactivity of Fe-porphyrin-nitrene intermediates bearing different "axial" coordination have been investigated using multiconfigurational complete active space self-consistent field (CASSCF), N-electron valence perturbation theory (NEVPT2), and hybrid density functional theory (DFT-B3LYP) calculations. Three types of "axial" coordination, -OMe/-O(H)Me (/), -SMe/-S(H)Me (), and -NMeIm (MeIm = 3-methyl-imidazole) () mimicking serine, cysteine, and histidine, respectively, along with no axial coordination () have been considered to decipher how the "axial" coordination of different strengths regulates the electronic integrity of the Fe-N core and nitrene-transfer reactivity of Fe-porphyrin-nitrene intermediates. CASSCF-based natural orbitals reveal two distinct classes of electronic structures: Fe-nitrenes ( and ) with relatively stronger axial coordination (-OMe and -SMe) display "imidyl" nature and those ( and ) with weaker axial coordination (-O(H)Me, -S(H)Me and no axial coordination) exhibit "imido-like" character. A borderline between the two classes is also observed with NMeIm axial coordination (). Axial coordination of different strengths not only regulates the electronic structure but also modulates the Fe-3d orbital energies, as revealed through the - transition energies obtained by CASSCF/NEVPT2 calculations. The relatively lower energy of Fe-3 orbital allows easy access to low-lying high-spin quintet states in the cases of weaker "axial" coordination ( and ), and the associated hydrogen atom transfer (HAT) reactivity appears to involve two-state triplet-quintet reactivity through minimum energy crossing point (MECP) between the spin states. In stark contrast, Fe-nitrenes with relatively stronger "axial" coordination ( and ) undergo triplet-only HAT reactivity. Overall, this in-depth electronic structure investigation and HAT reactivity evaluation reveal that the weaker axial coordination in Fe-porphyrin-nitrene complexes ( and ) can promote more efficient C-H oxidation through the quintet spin state.
利用多组态完全活性空间自洽场(CASSCF)、N电子价层微扰理论(NEVPT2)和杂化密度泛函理论(DFT-B3LYP)计算,研究了具有不同“轴向”配位的铁卟啉-氮烯中间体的详细电子结构及其与分子内C-H胺化反应活性的相关性。分别模拟丝氨酸、半胱氨酸和组氨酸的三种“轴向”配位类型,即-OMe/-O(H)Me(/)、-SMe/-S(H)Me()和-NMeIm(MeIm = 3-甲基咪唑)(),以及无轴向配位(),以阐明不同强度的“轴向”配位如何调节Fe-N核的电子完整性和铁卟啉-氮烯中间体的氮烯转移反应活性。基于CASSCF的自然轨道揭示了两类不同的电子结构:具有相对较强轴向配位(-OMe和-SMe)的铁-氮烯(和)呈现“亚氨酰基”性质,而具有较弱轴向配位(-O(H)Me、-S(H)Me和无轴向配位)的铁-氮烯(和)表现出“亚氨基样”特征。在NMeIm轴向配位()的情况下也观察到了这两类之间的界限。如通过CASSCF/NEVPT2计算得到的-跃迁能所示,不同强度的轴向配位不仅调节电子结构,还调节Fe-3d轨道能量。在较弱“轴向”配位(和)的情况下,Fe-3轨道相对较低的能量使得易于进入低能高自旋五重态,并且相关的氢原子转移(HAT)反应活性似乎涉及通过自旋态之间的最小能量交叉点(MECP)的双态三重态-五重态反应活性。与之形成鲜明对比的是,具有相对较强“轴向”配位(和)的铁-氮烯仅发生三重态HAT反应活性。总体而言,这种深入的电子结构研究和HAT反应活性评估表明,铁卟啉-氮烯配合物中较弱的轴向配位(和)可以通过五重态自旋态促进更有效的C-H氧化。