Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
Institute for Neural Computation, University of California San Diego, La Jolla, California 92093, USA.
Chaos. 2023 Dec 1;33(12). doi: 10.1063/5.0165904.
Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.
延迟微分分析(DDA)是一种基于非线性动力系统原理分析时间序列的非线性方法。本文将 DDA 扩展到包含网络方面,以提高复杂系统的动力学特征描述。为了展示其有效性,首先将具有网络功能的 DDA 应用于不同参数状态和噪声条件下著名的 Rössler 系统。然后,基于皮质区域的网络基序 DDA 应用于接受术前监测的耐药性癫痫患者的侵入性颅内脑电图数据。从这一分析中得出的大脑区域之间的有向网络基序在癫痫发作前后发生了巨大变化。神经系统提供了复杂数据的丰富来源,这些数据源于网络相互作用产生的不同内部状态。
Neural Comput. 2017-12
Front Hum Neurosci. 2024-5-17
Clin Neurophysiol. 2021-11
Clin Neurophysiol. 2020-8
Chaos. 2019-12
Epilepsy Behav. 2021-8
Epilepsy Res. 2020-1
Nat Rev Neurol. 2019-10