文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

网络基元延迟微分分析癫痫发作期间的脑活动。

Network-motif delay differential analysis of brain activity during seizures.

机构信息

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.

Institute for Neural Computation, University of California San Diego, La Jolla, California 92093, USA.

出版信息

Chaos. 2023 Dec 1;33(12). doi: 10.1063/5.0165904.


DOI:10.1063/5.0165904
PMID:38156987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10757649/
Abstract

Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.

摘要

延迟微分分析(DDA)是一种基于非线性动力系统原理分析时间序列的非线性方法。本文将 DDA 扩展到包含网络方面,以提高复杂系统的动力学特征描述。为了展示其有效性,首先将具有网络功能的 DDA 应用于不同参数状态和噪声条件下著名的 Rössler 系统。然后,基于皮质区域的网络基序 DDA 应用于接受术前监测的耐药性癫痫患者的侵入性颅内脑电图数据。从这一分析中得出的大脑区域之间的有向网络基序在癫痫发作前后发生了巨大变化。神经系统提供了复杂数据的丰富来源,这些数据源于网络相互作用产生的不同内部状态。

相似文献

[1]
Network-motif delay differential analysis of brain activity during seizures.

Chaos. 2023-12-1

[2]
Dynamical ergodicity DDA reveals causal structure in time series.

Chaos. 2021-10

[3]
Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data.

Neural Comput. 2017-12

[4]
Causality detection in cortical seizure dynamics using cross-dynamical delay differential analysis.

Chaos. 2019-10

[5]
Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery.

Nat Commun. 2022-2-22

[6]
Stimulating native seizures with neural resonance: a new approach to localize the seizure onset zone.

Brain. 2022-11-21

[7]
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

J Vis Exp. 2012-6-26

[8]
Dynamical intracranial EEG functional network controllability localizes the seizure onset zone and predicts the epilepsy surgical outcome.

J Neural Eng. 2025-3-14

[9]
Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques.

IEEE Trans Biomed Eng. 2004-3

[10]
Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study.

Brain. 2019-4-1

引用本文的文献

[1]
Decoding imagined speech with delay differential analysis.

Front Hum Neurosci. 2024-5-17

本文引用的文献

[1]
Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes.

PLoS One. 2023

[2]
Dynamical ergodicity DDA reveals causal structure in time series.

Chaos. 2021-10

[3]
Microscale dynamics of electrophysiological markers of epilepsy.

Clin Neurophysiol. 2021-11

[4]
Active probing to highlight approaching transitions to ictal states in coupled neural mass models.

PLoS Comput Biol. 2021-1

[5]
Seizure onset location shapes dynamics of initiation.

Clin Neurophysiol. 2020-8

[6]
Cortical chimera states predict epileptic seizures.

Chaos. 2019-12

[7]
Epilepsy as a dynamical system, a most needed paradigm shift in epileptology.

Epilepsy Behav. 2021-8

[8]
Emerging roles of network analysis for epilepsy.

Epilepsy Res. 2020-1

[9]
Causality detection in cortical seizure dynamics using cross-dynamical delay differential analysis.

Chaos. 2019-10

[10]
Changing concepts in presurgical assessment for epilepsy surgery.

Nat Rev Neurol. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索