多通道脑皮层电图数据中癫痫发作的延迟微分分析

Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data.

作者信息

Lainscsek Claudia, Weyhenmeyer Jonathan, Cash Sydney S, Sejnowski Terrence J

机构信息

Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A., and Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, U.S.A.

Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.

出版信息

Neural Comput. 2017 Dec;29(12):3181-3218. doi: 10.1162/neco_a_01009. Epub 2017 Aug 4.

Abstract

High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy. DDA is a time-domain analysis framework based on embedding theory in nonlinear dynamics that reveals the nonlinear invariant properties of an unknown dynamical system. The DDA embedding serves as a low-dimensional nonlinear dynamical basis onto which the data are mapped. This greatly reduces the risk of overfitting and improves the method's ability to fit classes of data. Since the basis is built on the dynamical structure of the data, preprocessing of the data (e.g., filtering) is not necessary. We performed a large-scale search for a DDA model that best fit ECoG recordings using a genetic algorithm to qualitatively discriminate between different cortical states and epileptic events for a set of 13 patients. A single DDA model with only three polynomial terms was identified. Singular value decomposition across the feature space of the model revealed both global and local dynamics that could differentiate electrographic and electroclinical seizures and provided insights into highly localized seizure onsets and diffuse seizure terminations. Other common ECoG features such as interictal periods, artifacts, and exogenous stimuli were also analyzed with DDA. This novel framework for signal processing of seizure information demonstrates an ability to reveal unique characteristics of the underlying dynamics of the seizure and may be useful in better understanding, detecting, and maybe even predicting seizures.

摘要

高密度皮质脑电图(ECoG)电极能够以高时间分辨率记录具有广泛空间覆盖范围的神经生理数据。这些记录是了解人类大脑如何处理信息以及随后在健康和病理状态下行为表现的一扇窗口。在此,我们描述并实施延迟微分分析(DDA),用于表征从患有顽固性癫痫的人类患者获取的ECoG数据。DDA是一种基于非线性动力学中的嵌入理论的时域分析框架,它揭示了未知动态系统的非线性不变特性。DDA嵌入作为一个低维非线性动力学基础,数据被映射到该基础上。这大大降低了过拟合的风险,并提高了该方法拟合各类数据的能力。由于该基础是基于数据的动态结构构建的,因此无需对数据进行预处理(例如滤波)。我们使用遗传算法进行了大规模搜索,以寻找最适合ECoG记录的DDA模型,从而定性地区分一组13名患者的不同皮质状态和癫痫事件。确定了一个仅具有三个多项式项的单一DDA模型。对该模型特征空间进行奇异值分解,揭示了能够区分脑电图发作和临床发作的全局和局部动态,并为高度局部化的发作起始和弥漫性发作终止提供了见解。DDA还分析了其他常见的ECoG特征,如发作间期、伪迹和外源性刺激。这种用于癫痫发作信息信号处理的新颖框架展示了揭示癫痫发作潜在动态独特特征的能力,可能有助于更好地理解、检测甚至预测癫痫发作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索