Zakomirnyi Vadim I, Moroz Alexander, Bhargava Rohit, Rasskazov Ilia L
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Wave-scattering.com.
ACS Nano. 2024 Jan 16;18(2):1621-1628. doi: 10.1021/acsnano.3c09777. Epub 2023 Dec 29.
Nano- and microparticles are popular media to enhance optical signals, including fluorescence from a dye proximal to the particle. Here we show that homogeneous, lossless, all-dielectric spheres with diameters in the mesoscale range, between nano- (≲100 nm) and micro- (≳1 μm) scales, can offer surprisingly large fluorescence enhancements, up to ∼ 10. With the absence of nonradiative Ohmic losses inherent to plasmonic particles, we show that can increase, decrease or even stay the same with increasing intrinsic quantum yield , for suppressed, enhanced or intact radiative decay rates of a fluorophore, respectively. Further, the fluorophore may be located inside or outside the particle, providing additional flexibility and opportunities to design fit for purpose particles. The presented analysis with simple dielectric spheres should spur further interest in this less-explored scale of particles and experimental investigations to realize their potential for applications in imaging, molecular sensing, light coupling, and quantum information processing.
纳米粒子和微米粒子是增强光学信号的常用介质,包括来自粒子附近染料的荧光。在此我们表明,直径处于介观尺度范围(介于纳米(≲100 nm)和微米(≳1 μm)尺度之间)的均匀、无损全介质球体能够提供高达约10倍的惊人荧光增强。由于不存在等离子体粒子固有的非辐射欧姆损耗,我们表明,随着本征量子产率的增加,荧光增强因子可能分别因荧光团的辐射衰减率被抑制、增强或保持不变而增加、减少甚至保持不变。此外,荧光团可以位于粒子内部或外部,为设计适用的粒子提供了额外的灵活性和机会。对简单介电球体的分析应会激发人们对这一较少被探索的粒子尺度的进一步兴趣,并推动实验研究,以实现其在成像、分子传感、光耦合和量子信息处理中的应用潜力。