Max Planck Institute of Biochemistry, 82152, Martinsried, Munich, Germany.
Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539, Munich, Germany.
Nat Commun. 2019 Mar 20;10(1):1268. doi: 10.1038/s41467-019-09064-6.
Super-resolution (SR) techniques have extended the optical resolution down to a few nanometers. However, quantitative treatment of SR data remains challenging due to its complex dependence on a manifold of experimental parameters. Among the different SR variants, DNA-PAINT is relatively straightforward to implement, since it achieves the necessary 'blinking' without the use of rather complex optical or chemical activation schemes. However, it still suffers from image and quantification artifacts caused by inhomogeneous optical excitation. Here we demonstrate that several experimental challenges can be alleviated by introducing a segment-wise analysis approach and ultimately overcome by implementing a flat-top illumination profile for TIRF microscopy using a commercially-available beam-shaping device. The improvements with regards to homogeneous spatial resolution and precise kinetic information over the whole field-of-view were quantitatively assayed using DNA origami and cell samples. Our findings open the door to high-throughput DNA-PAINT studies with thus far unprecedented accuracy for quantitative data interpretation.
超分辨率(SR)技术将光学分辨率扩展到了几纳米。然而,由于其对多种实验参数的复杂依赖性,SR 数据的定量处理仍然具有挑战性。在不同的 SR 变体中,DNA-PAINT 相对易于实现,因为它无需使用相当复杂的光学或化学激活方案即可实现必要的“闪烁”。然而,它仍然受到不均匀光激发引起的图像和定量伪影的影响。在这里,我们证明通过引入分段分析方法,可以缓解几个实验挑战,并最终通过使用市售光束整形装置为 TIRF 显微镜实现平顶照明轮廓来克服这些挑战。使用 DNA 折纸和细胞样本对整个视场的均匀空间分辨率和精确动力学信息进行了定量评估,证明了这些改进。我们的发现为高通量 DNA-PAINT 研究开辟了道路,为定量数据分析提供了前所未有的准确性。