Tay Zhiwei, Kim Han-Joon, Ho John S, Olivo Malini
IEEE Trans Med Imaging. 2024 May;43(5):1740-1752. doi: 10.1109/TMI.2023.3348149. Epub 2024 May 2.
Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.
微创且生物相容的可植入生物电子电路用于长期监测体内的生理过程。然而,缺乏能够在体内对设备进行廉价且便捷成像同时提取传感器信息的方法。具有零背景信号、高对比度以及定量图像高灵敏度的磁粒子成像(MPI)对于这一挑战而言是理想的,因为磁信号不会随着组织深度增加而被吸收且不会产生辐射剂量。我们展示了如何通过将磁性纳米颗粒(超顺磁性氧化铁纳米颗粒)封装并磁耦合到设备电路,轻松地对常见可植入设备进行修改以便通过MPI成像。这些经过修改的可植入设备不仅通过MPI提供空间信息,还能与我们的手持式MPI阅读器耦合,通过电阻式或电容式传感器进行开关或频率偏移来调制来自磁性纳米颗粒的谐波信号,从而传输传感器信息。本文提供了一种针对可植入设备的优化MPI成像技术的概念验证,该技术通过在磁粒子光谱中进行编码来提取空间信息以及植入电路传输的其他信息(如生物传感)。4D图像呈现出3D位置以及响应可变生物特征的变化色调。利用MPI独特成像特性的生物电子电路进行生物物理传感,可能会在生物医学和诊断领域实现广泛的微创应用。