Suppr超能文献

基于动力学特征在肾血流动力学机器学习分类中的效能

Efficacy of Dynamics-based Features for Machine Learning Classification of Renal Hemodynamics.

作者信息

Chopde Purva R, Álvarez-Cedrón Rocío, Alphonse Sebastian, Polichnowski Aaron J, Griffin Karen A, Williamson Geoffrey A

机构信息

Dept. of Elec. and Comp. Engr. Illinois Institute of Technology Chicago, IL, U.S.A.

Illinois Institute of Technology Chicago, IL, U.S.A. Universidad Politécnica de Madrid Madrid, Spain.

出版信息

Proc Eur Signal Process Conf EUSIPCO. 2023 Sep;2023:1145-1149. doi: 10.23919/eusipco58844.2023.10289999. Epub 2023 Nov 1.

Abstract

Different machine learning approaches for analyzing renal hemodynamics using time series of arterial blood pressure and renal blood flow rate measurements in conscious rats are developed and compared. Particular emphasis is placed on features used for machine learning. The test scenario involves binary classification of Sprague-Dawley rats obtained from two different suppliers, with the suppliers' rat colonies having drifted slightly apart in hemodynamic characteristics. Models used for the classification include deep neural network (DNN), random forest, support vector machine, multilayer perceptron. While the DNN uses raw pressure/flow measurements as features, the latter three use a feature vector of parameters of a nonlinear dynamic system fitted to the pressure/flow data, thereby restricting the classification basis to the hemodynamics. Although the performance in these cases is slightly reduced in comparison to that of the DNN, they still show promise for machine learning (ML) application. The pioneering contribution of this work is the establishment that even with features limited to hemodynamics-based information, the ML models can successfully achieve classification with reasonably high accuracy.

摘要

开发并比较了使用清醒大鼠动脉血压和肾血流速率测量的时间序列来分析肾血流动力学的不同机器学习方法。特别强调了用于机器学习的特征。测试场景涉及对从两个不同供应商获得的Sprague-Dawley大鼠进行二元分类,供应商的大鼠群体在血流动力学特征上略有差异。用于分类的模型包括深度神经网络(DNN)、随机森林、支持向量机、多层感知器。虽然DNN使用原始压力/流量测量作为特征,但后三种模型使用拟合到压力/流量数据的非线性动态系统参数的特征向量,从而将分类基础限制在血流动力学上。尽管与DNN相比,这些情况下的性能略有降低,但它们仍显示出机器学习(ML)应用的前景。这项工作的开创性贡献在于确定,即使特征仅限于基于血流动力学的信息,ML模型也能以相当高的准确率成功实现分类。

相似文献

1
Efficacy of Dynamics-based Features for Machine Learning Classification of Renal Hemodynamics.
Proc Eur Signal Process Conf EUSIPCO. 2023 Sep;2023:1145-1149. doi: 10.23919/eusipco58844.2023.10289999. Epub 2023 Nov 1.
2
Autoregulatory Efficiency Assessment in Kidneys Using Deep Learning.
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1165-1169. doi: 10.23919/eusipco47968.2020.9287447. Epub 2020 Dec 18.
4
Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
Front Artif Intell. 2024 Jun 11;7:1355287. doi: 10.3389/frai.2024.1355287. eCollection 2024.
6
Deep Neural Network for Automatic Classification of Pathological Voice Signals.
J Voice. 2022 Mar;36(2):288.e15-288.e24. doi: 10.1016/j.jvoice.2020.05.029. Epub 2020 Jul 10.
7
SVM-RLF-DNN: A DNN with reliefF and SVM for automatic identification of COVID from chest X-ray and CT images.
Digit Health. 2024 May 27;10:20552076241257045. doi: 10.1177/20552076241257045. eCollection 2024 Jan-Dec.
8
A clinical text classification paradigm using weak supervision and deep representation.
BMC Med Inform Decis Mak. 2019 Jan 7;19(1):1. doi: 10.1186/s12911-018-0723-6.
9
Stress detection using deep neural networks.
BMC Med Inform Decis Mak. 2020 Dec 30;20(Suppl 11):285. doi: 10.1186/s12911-020-01299-4.
10
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.

引用本文的文献

1
Role of the very low frequencies of the renal oxygen saturation signal in acute kidney injury in newborns with perinatal asphyxia.
Front Pediatr. 2025 Jan 20;13:1490321. doi: 10.3389/fped.2025.1490321. eCollection 2025.

本文引用的文献

1
Autoregulatory Efficiency Assessment in Kidneys Using Deep Learning.
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1165-1169. doi: 10.23919/eusipco47968.2020.9287447. Epub 2020 Dec 18.
2
Machine Learning for Renal Pathologies: An Updated Survey.
Sensors (Basel). 2022 Jul 1;22(13):4989. doi: 10.3390/s22134989.
3
Classification of Brainwaves Using Convolutional Neural Network.
Proc Eur Signal Process Conf EUSIPCO. 2019 Sep;2019. doi: 10.23919/eusipco.2019.8902952. Epub 2019 Nov 18.
4
BP Fluctuations and the Real-Time Dynamics of Renal Blood Flow Responses in Conscious Rats.
J Am Soc Nephrol. 2020 Feb;31(2):324-336. doi: 10.1681/ASN.2019070718. Epub 2019 Dec 2.
5
Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis.
PLoS One. 2016 Jul 6;11(7):e0158765. doi: 10.1371/journal.pone.0158765. eCollection 2016.
6
Renal autoregulation in health and disease.
Physiol Rev. 2015 Apr;95(2):405-511. doi: 10.1152/physrev.00042.2012.
7
Renal microvascular dysfunction, hypertension and CKD progression.
Curr Opin Nephrol Hypertens. 2013 Jan;22(1):1-9. doi: 10.1097/MNH.0b013e32835b36c1.
8
Large BP-dependent and -independent differences in susceptibility to nephropathy after nitric oxide inhibition in Sprague-Dawley rats from two major suppliers.
Am J Physiol Renal Physiol. 2012 Jan 1;302(1):F173-82. doi: 10.1152/ajprenal.00070.2011. Epub 2011 Sep 21.
9
Assessment of renal autoregulation.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1105-23. doi: 10.1152/ajprenal.00194.2006. Epub 2007 Jan 16.
10
Characterization of dynamics in renal autoregulation using volterra models.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2166-76. doi: 10.1109/TBME.2006.883659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验