Chopde Purva R, Álvarez-Cedrón Rocío, Alphonse Sebastian, Polichnowski Aaron J, Griffin Karen A, Williamson Geoffrey A
Dept. of Elec. and Comp. Engr. Illinois Institute of Technology Chicago, IL, U.S.A.
Illinois Institute of Technology Chicago, IL, U.S.A. Universidad Politécnica de Madrid Madrid, Spain.
Proc Eur Signal Process Conf EUSIPCO. 2023 Sep;2023:1145-1149. doi: 10.23919/eusipco58844.2023.10289999. Epub 2023 Nov 1.
Different machine learning approaches for analyzing renal hemodynamics using time series of arterial blood pressure and renal blood flow rate measurements in conscious rats are developed and compared. Particular emphasis is placed on features used for machine learning. The test scenario involves binary classification of Sprague-Dawley rats obtained from two different suppliers, with the suppliers' rat colonies having drifted slightly apart in hemodynamic characteristics. Models used for the classification include deep neural network (DNN), random forest, support vector machine, multilayer perceptron. While the DNN uses raw pressure/flow measurements as features, the latter three use a feature vector of parameters of a nonlinear dynamic system fitted to the pressure/flow data, thereby restricting the classification basis to the hemodynamics. Although the performance in these cases is slightly reduced in comparison to that of the DNN, they still show promise for machine learning (ML) application. The pioneering contribution of this work is the establishment that even with features limited to hemodynamics-based information, the ML models can successfully achieve classification with reasonably high accuracy.
开发并比较了使用清醒大鼠动脉血压和肾血流速率测量的时间序列来分析肾血流动力学的不同机器学习方法。特别强调了用于机器学习的特征。测试场景涉及对从两个不同供应商获得的Sprague-Dawley大鼠进行二元分类,供应商的大鼠群体在血流动力学特征上略有差异。用于分类的模型包括深度神经网络(DNN)、随机森林、支持向量机、多层感知器。虽然DNN使用原始压力/流量测量作为特征,但后三种模型使用拟合到压力/流量数据的非线性动态系统参数的特征向量,从而将分类基础限制在血流动力学上。尽管与DNN相比,这些情况下的性能略有降低,但它们仍显示出机器学习(ML)应用的前景。这项工作的开创性贡献在于确定,即使特征仅限于基于血流动力学的信息,ML模型也能以相当高的准确率成功实现分类。