Suppr超能文献

基于卷积神经网络的脑电波分类

Classification of Brainwaves Using Convolutional Neural Network.

作者信息

Joshi Swapnil R, Headley Drew B, Ho K C, Paré Denis, Nair Satish S

机构信息

EECS Department, University of Missouri, Columbia, MO 65211, USA.

Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA.

出版信息

Proc Eur Signal Process Conf EUSIPCO. 2019 Sep;2019. doi: 10.23919/eusipco.2019.8902952. Epub 2019 Nov 18.

Abstract

Classification of brainwaves in recordings is of considerable interest to neuroscience and medical communities. Classification techniques used presently depend on the extraction of low-level features from the recordings, which in turn affects the classification performance. To alleviate this problem, this paper proposes an end-to-end approach using Convolutional Neural Network (CNN) which has been shown to detect complex patterns in a signal by exploiting its spatiotemporal nature. The present study uses time and frequency axes for the classification using synthesized Local Field Potential (LFP) data. The results are analyzed and compared with the FFT technique. In all the results, the CNN outperforms the FFT by a significant margin especially when the noise level is high. This study also sheds light on certain signal characteristics affecting network performance.

摘要

脑电记录中的脑电波分类在神经科学和医学界备受关注。目前使用的分类技术依赖于从记录中提取低级特征,这反过来又会影响分类性能。为缓解这一问题,本文提出了一种使用卷积神经网络(CNN)的端到端方法,该方法已被证明可通过利用信号的时空特性来检测复杂模式。本研究使用合成的局部场电位(LFP)数据,在时间和频率轴上进行分类。对结果进行了分析,并与快速傅里叶变换(FFT)技术进行了比较。在所有结果中,CNN的表现均显著优于FFT,尤其是在噪声水平较高时。本研究还揭示了某些影响网络性能的信号特征。

相似文献

1
Classification of Brainwaves Using Convolutional Neural Network.基于卷积神经网络的脑电波分类
Proc Eur Signal Process Conf EUSIPCO. 2019 Sep;2019. doi: 10.23919/eusipco.2019.8902952. Epub 2019 Nov 18.

引用本文的文献

1
An Integrative Review of Brainwave Entrainment Benefits for Human Health.脑电波诱导对人类健康益处的综合综述
Appl Psychophysiol Biofeedback. 2025 Mar;50(1):3-9. doi: 10.1007/s10484-024-09682-x. Epub 2024 Dec 19.
2
Autoregulatory Efficiency Assessment in Kidneys Using Deep Learning.使用深度学习评估肾脏的自动调节效率
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1165-1169. doi: 10.23919/eusipco47968.2020.9287447. Epub 2020 Dec 18.
3
Efficacy of Dynamics-based Features for Machine Learning Classification of Renal Hemodynamics.基于动力学特征在肾血流动力学机器学习分类中的效能
Proc Eur Signal Process Conf EUSIPCO. 2023 Sep;2023:1145-1149. doi: 10.23919/eusipco58844.2023.10289999. Epub 2023 Nov 1.

本文引用的文献

4
Common oscillatory mechanisms across multiple memory systems.多个记忆系统中的共同振荡机制。
NPJ Sci Learn. 2017;2. doi: 10.1038/s41539-016-0001-2. Epub 2017 Jan 5.
8
Gamma rhythms in the brain.大脑中的伽马节律。
PLoS Biol. 2011 Apr;9(4):e1001045. doi: 10.1371/journal.pbio.1001045. Epub 2011 Apr 12.
9
Neuronal oscillations in cortical networks.皮质网络中的神经元振荡。
Science. 2004 Jun 25;304(5679):1926-9. doi: 10.1126/science.1099745.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验