Suppr超能文献

COVID-19大流行期间临床护理中的人工智能:一项系统综述。

Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.

作者信息

Adamidi Eleni S, Mitsis Konstantinos, Nikita Konstantina S

机构信息

Biomedical Simulations and Imaging Lab, School of Electrical and Computer Engineering, National Technical University of Athens, Greece.

出版信息

Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.

Abstract

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

摘要

截至目前,由严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)病毒引发的全球健康危机已导致超过300万人死亡。改善该疾病的早期筛查、诊断和预后是在这场大流行期间协助医护人员挽救生命的关键步骤。自世界卫生组织宣布新型冠状病毒肺炎(COVID-19)疫情为大流行以来,已经开展了多项研究,运用人工智能技术在质量、准确性以及最重要的时间方面优化临床环境中的这些步骤。本研究的目的是对已发表和预印本报告中针对2019冠状病毒病的筛查、诊断和预后开发并验证的人工智能模型进行系统的文献综述。我们纳入了2020年1月1日至2020年12月30日期间发表的101项研究,这些研究开发了可应用于临床环境的人工智能预测模型。我们总共确定了14个筛查模型、38个用于检测COVID-19的诊断模型以及50个用于预测重症监护病房需求、呼吸机需求、死亡风险、严重程度评估或住院时长的预后模型。此外,43项研究基于医学影像,58项研究基于临床参数、实验室结果或人口统计学特征的使用。确定了从多模态数据得出的几个异质预测因子。对从各种来源获取的这些多模态数据,就纳入研究的每个类别的突出程度进行了分析。最后,还进行了偏倚风险(RoB)分析,以检验纳入研究在临床环境中的适用性,并协助医护人员、指南制定者和政策制定者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fcd/8141535/417277b82825/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验