文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用智能手表-智能手机技术对晚期帕金森病患者进行家庭监测。

Home-based monitoring of persons with advanced Parkinson's disease using smartwatch-smartphone technology.

机构信息

Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Ramat Gan, Israel.

Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.

出版信息

Sci Rep. 2024 Jan 2;14(1):9. doi: 10.1038/s41598-023-48209-y.


DOI:10.1038/s41598-023-48209-y
PMID:38167434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10761812/
Abstract

Movement deterioration is the hallmark of Parkinson's disease (PD), characterized by levodopa-induced motor-fluctuations (i.e., symptoms' variability related to the medication cycle) in advanced stages. However, motor symptoms are typically too sporadically and/or subjectively assessed, ultimately preventing the effective monitoring of their progression, and thus leading to suboptimal treatment/therapeutic choices. Smartwatches (SW) enable a quantitative-oriented approach to motor-symptoms evaluation, namely home-based monitoring (HBM) using an embedded inertial measurement unit. Studies validated such approach against in-clinic evaluations. In this work, we aimed at delineating personalized motor-fluctuations' profiles, thus capturing individual differences. 21 advanced PD patients with motor fluctuations were monitored for 2 weeks using a SW and a smartphone-dedicated app (Intel Pharma Analytics Platform). The SW continuously collected passive data (tremor, dyskinesia, level of activity using dedicated algorithms) and active data, i.e., time-up-and-go, finger tapping, hand tremor and hand rotation carried out daily, once in OFF and once in ON levodopa periods. We observed overall high compliance with the protocol. Furthermore, we observed striking differences among the individual patterns of symptoms' levodopa-related variations across the HBM, allowing to divide our participants among four data-driven, motor-fluctuations' profiles. This highlights the potential of HBM using SW technology for revolutionizing clinical practices.

摘要

运动恶化是帕金森病(PD)的标志,在晚期表现为左旋多巴诱导的运动波动(即与药物周期相关的症状变化)。然而,运动症状通常过于零星和/或主观评估,最终无法有效监测其进展,从而导致治疗/治疗选择不佳。智能手表(SW)使我们能够采用定量方法评估运动症状,即使用嵌入式惯性测量单元进行家庭监测(HBM)。研究已经验证了这种方法与临床评估的一致性。在这项工作中,我们旨在描绘个性化的运动波动特征,从而捕捉个体差异。21 名患有运动波动的晚期 PD 患者使用 SW 和智能手机专用应用程序(Intel Pharma Analytics Platform)监测了 2 周。SW 持续采集被动数据(使用专用算法测量震颤、运动障碍、活动水平)和主动数据,即每日在 OFF 和 ON 左旋多巴期进行一次的起身行走、手指敲击、手部震颤和手部旋转。我们观察到参与者总体上高度遵守方案。此外,我们观察到 HBM 中个体症状与左旋多巴相关变化的模式存在显著差异,这使得我们可以根据运动波动特征将参与者分为四组。这突显了使用 SW 技术进行 HBM 的潜力,有望彻底改变临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/f9919e7863d7/41598_2023_48209_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/dfa3792e8170/41598_2023_48209_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/613647b8f2a8/41598_2023_48209_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/0d1aaafa02fb/41598_2023_48209_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/8aefade8064e/41598_2023_48209_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/35f18494313b/41598_2023_48209_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/f9919e7863d7/41598_2023_48209_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/dfa3792e8170/41598_2023_48209_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/613647b8f2a8/41598_2023_48209_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/0d1aaafa02fb/41598_2023_48209_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/8aefade8064e/41598_2023_48209_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/35f18494313b/41598_2023_48209_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47f6/10761812/f9919e7863d7/41598_2023_48209_Fig6_HTML.jpg

相似文献

[1]
Home-based monitoring of persons with advanced Parkinson's disease using smartwatch-smartphone technology.

Sci Rep. 2024-1-2

[2]
Supervised versus unsupervised technology-based levodopa monitoring in Parkinson's disease: an intrasubject comparison.

J Neurol. 2018-3-29

[3]
Current Practices for Outpatient Initiation of Levodopa-Carbidopa Intestinal Gel for Management of Advanced Parkinson's Disease in the United States.

Adv Ther. 2019-7-5

[4]
Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial.

Mov Disord. 2018-4-27

[5]
Early Parkinson's disease: what is the best approach to treatment.

Drugs Aging. 2000-9

[6]
Non-dopaminergic treatments for motor control in Parkinson's disease.

Drugs. 2013-9

[7]
Feasibility of home-based automated Parkinson's disease motor assessment.

J Neurosci Methods. 2011-9-29

[8]
The modern pre-levodopa era of Parkinson's disease: insights into motor complications from sub-Saharan Africa.

Brain. 2014-10

[9]
Subthalamic nucleus stimulation for Parkinson disease: benefits observed in levodopa-intolerant patients.

J Neurosurg. 2001-8

[10]
Safinamide as Add-On Therapy to Levodopa in Mid- to Late-Stage Parkinson's Disease Fluctuating Patients: Post hoc Analyses of Studies 016 and SETTLE.

J Parkinsons Dis. 2016

引用本文的文献

[1]
Continuous Movement Monitoring at Home Through Wearable Devices: A Systematic Review.

Sensors (Basel). 2025-8-8

[2]
Machine learning approaches to predicting medication nonadherence: a scoping review.

Int J Med Inform. 2025-8-14

[3]
Advancing the Integration of Digital Health Technologies in the Drug Development Ecosystem.

J Med Internet Res. 2025-7-31

[4]
Digital Biomarkers for Parkinson Disease: Bibliometric Analysis and a Scoping Review of Deep Learning for Freezing of Gait.

J Med Internet Res. 2025-5-20

[5]
Wearables research for continuous monitoring of patient outcomes: A scoping review.

PLOS Digit Health. 2025-5-9

[6]
Association between internet addiction and insomnia among college freshmen: the chain mediation effect of emotion regulation and anxiety and the moderating role of gender.

BMC Psychiatry. 2025-4-2

[7]
Evaluating Heart Rate Variability as a Biomarker for Autonomic Function in Parkinson's Disease Rehabilitation: A Clustering-Based Analysis of Exercise-Induced Changes.

Medicina (Kaunas). 2025-3-17

[8]
Usage Trends and Data Sharing Practices of Healthcare Wearable Devices Among US Adults: Cross-Sectional Study.

J Med Internet Res. 2025-2-21

[9]
Accelerated symptom improvement in Parkinson's disease via remote internet-based optimization of deep brain stimulation therapy: a randomized controlled multicenter trial.

Commun Med (Lond). 2025-1-31

[10]
Genetic analyses identify circulating genes related to brain structures associated with Parkinson's disease.

NPJ Parkinsons Dis. 2025-1-14

本文引用的文献

[1]
Toward objective monitoring of Parkinson's disease motor symptoms using a wearable device: wearability and performance evaluation of PDMonitor.

Front Neurol. 2023-5-16

[2]
Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review.

Sensors (Basel). 2022-2-24

[3]
Real-World Evidence for a Smartwatch-Based Parkinson's Motor Assessment App for Patients Undergoing Therapy Changes.

Digit Biomark. 2021-9-8

[4]
Comparing subjective and objective response to medications in Parkinson's disease patients using the Personal KinetiGraph™.

Parkinsonism Relat Disord. 2021-6

[5]
Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson's disease.

Sci Transl Med. 2021-2-3

[6]
Wearables in the home-based assessment of abnormal movements in Parkinson's disease: a systematic review of the literature.

J Neurol. 2022-1

[7]
Clinical utility of a personalized and long-term monitoring device for Parkinson's disease in a real clinical practice setting: An expert opinion survey on STAT-ON™.

Neurologia (Engl Ed). 2020-12-24

[8]
Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson's disease data.

NPJ Digit Med. 2019-9-25

[9]
Monitoring Parkinson's disease symptoms during daily life: a feasibility study.

NPJ Parkinsons Dis. 2019-9-30

[10]
Effect of using a wearable device on clinical decision-making and motor symptoms in patients with Parkinson's disease starting transdermal rotigotine patch: A pilot study.

Parkinsonism Relat Disord. 2019-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索