Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Ramat Gan, Israel.
Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
Sci Rep. 2024 Jan 2;14(1):9. doi: 10.1038/s41598-023-48209-y.
Movement deterioration is the hallmark of Parkinson's disease (PD), characterized by levodopa-induced motor-fluctuations (i.e., symptoms' variability related to the medication cycle) in advanced stages. However, motor symptoms are typically too sporadically and/or subjectively assessed, ultimately preventing the effective monitoring of their progression, and thus leading to suboptimal treatment/therapeutic choices. Smartwatches (SW) enable a quantitative-oriented approach to motor-symptoms evaluation, namely home-based monitoring (HBM) using an embedded inertial measurement unit. Studies validated such approach against in-clinic evaluations. In this work, we aimed at delineating personalized motor-fluctuations' profiles, thus capturing individual differences. 21 advanced PD patients with motor fluctuations were monitored for 2 weeks using a SW and a smartphone-dedicated app (Intel Pharma Analytics Platform). The SW continuously collected passive data (tremor, dyskinesia, level of activity using dedicated algorithms) and active data, i.e., time-up-and-go, finger tapping, hand tremor and hand rotation carried out daily, once in OFF and once in ON levodopa periods. We observed overall high compliance with the protocol. Furthermore, we observed striking differences among the individual patterns of symptoms' levodopa-related variations across the HBM, allowing to divide our participants among four data-driven, motor-fluctuations' profiles. This highlights the potential of HBM using SW technology for revolutionizing clinical practices.
运动恶化是帕金森病(PD)的标志,在晚期表现为左旋多巴诱导的运动波动(即与药物周期相关的症状变化)。然而,运动症状通常过于零星和/或主观评估,最终无法有效监测其进展,从而导致治疗/治疗选择不佳。智能手表(SW)使我们能够采用定量方法评估运动症状,即使用嵌入式惯性测量单元进行家庭监测(HBM)。研究已经验证了这种方法与临床评估的一致性。在这项工作中,我们旨在描绘个性化的运动波动特征,从而捕捉个体差异。21 名患有运动波动的晚期 PD 患者使用 SW 和智能手机专用应用程序(Intel Pharma Analytics Platform)监测了 2 周。SW 持续采集被动数据(使用专用算法测量震颤、运动障碍、活动水平)和主动数据,即每日在 OFF 和 ON 左旋多巴期进行一次的起身行走、手指敲击、手部震颤和手部旋转。我们观察到参与者总体上高度遵守方案。此外,我们观察到 HBM 中个体症状与左旋多巴相关变化的模式存在显著差异,这使得我们可以根据运动波动特征将参与者分为四组。这突显了使用 SW 技术进行 HBM 的潜力,有望彻底改变临床实践。
Drugs Aging. 2000-9
J Neurosci Methods. 2011-9-29
Sensors (Basel). 2025-8-8
Int J Med Inform. 2025-8-14
J Med Internet Res. 2025-7-31
PLOS Digit Health. 2025-5-9
J Med Internet Res. 2025-2-21
NPJ Parkinsons Dis. 2025-1-14
Parkinsonism Relat Disord. 2021-6
NPJ Parkinsons Dis. 2019-9-30