Diederichs Benedikt, Herdegen Ziria, Strauch Achim, Filbir Frank, Müller-Caspary Knut
Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
Nat Commun. 2024 Jan 2;15(1):101. doi: 10.1038/s41467-023-44268-x.
The greatly nonlinear diffraction of high-energy electron probes focused to subatomic diameters frustrates the direct inversion of ptychographic data sets to decipher the atomic structure. Several iterative algorithms have been proposed to yield atomically-resolved phase distributions within slices of a 3D specimen, corresponding to the scattering centers of the electron wave. By pixelwise phase retrieval, current approaches do not only involve orders of magnitude more free parameters than necessary, but also neglect essential details of scattering physics such as the atomistic nature of the specimen and thermal effects. Here, we introduce a parametrized, fully differentiable scheme employing neural network concepts which allows the inversion of ptychographic data by means of entirely physical quantities. Omnipresent thermal diffuse scattering in thick specimens is treated accurately using frozen phonons, and atom types, positions and partial coherence are accounted for in the inverse model as relativistic scattering theory demands. Our approach exploits 4D experimental data collected in an aberration-corrected momentum-resolved scanning transmission electron microscopy setup. Atom positions in a 20 nm thick PbZrTiO ferroelectric are measured with picometer precision, including the discrimination of different atom types and positions in mixed columns.
聚焦到亚原子直径的高能电子探针的高度非线性衍射阻碍了将叠层成像数据集直接反演以解析原子结构。已经提出了几种迭代算法来在三维样本的切片内产生原子分辨的相位分布,这对应于电子波的散射中心。通过逐像素相位恢复,当前方法不仅涉及比必要数量多几个数量级的自由参数,而且还忽略了散射物理的基本细节,例如样本的原子性质和热效应。在这里,我们引入了一种采用神经网络概念的参数化、完全可微的方案,该方案允许通过完全物理量来反演叠层成像数据。使用冻结声子精确处理厚样本中普遍存在的热漫散射,并且根据相对论散射理论的要求,在反演模型中考虑原子类型、位置和部分相干性。我们的方法利用在像差校正动量分辨扫描透射电子显微镜设置中收集的四维实验数据。在一个20纳米厚的锆钛酸铅铁电体中,原子位置的测量精度达到皮米,包括区分混合柱中不同的原子类型和位置。