Jonnavithula Anila, Tandar Megan, Umar Mohammed, Orton Scott N, Woodrum MacKenzie C, Mookherjee Sohom, Boudina Sihem, Symons J David, Ghosh Rajeshwary
bioRxiv. 2023 Dec 15:2023.12.14.571785. doi: 10.1101/2023.12.14.571785.
Pathologies including cardiovascular diseases, cancer, and neurological disorders are caused by the accumulation of misfolded / damaged proteins. Intracellular protein degradation mechanisms play a critical role in the clearance of these disease-causing proteins. Chaperone mediated autophagy (CMA) is a protein degradation pathway that employs chaperones to bind proteins, bearing a unique KFERQ-like motif, for delivery to a CMA-specific Lysosome Associated Membrane Protein 2a (LAMP2a) receptor for lysosomal degradation. To date, steady-state CMA function has been assessed by measuring LAMP2A protein expression. However, this does not provide information regarding CMA degradation activity. To fill this dearth of tools / assays to measure CMA activity, we generated a CMA-specific fluorogenic substrate assay.
A KFERQ-AMC [Lys-Phe-Asp-Arg-Gln-AMC(7-amino-4-methylcou-marin)] fluorogenic CMA substrate was synthesized from Solid-Phase Peptide Synthesis. KFERQ-AMC, when cleaved via lysosomal hydrolysis, causes AMC to release and fluoresce (Excitation:355 nm, Emission:460 nm). Using an inhibitor of lysosomal proteases, i.e., E64D [L-trans-Epoxy-succinyl-leucylamido(4-guanidino)butane)], responsible for cleaving CMA substrates, the actual CMA activity was determined. Essentially, To confirm specificity of the KFERQ sequence for CMA, negative control peptides were used.
Heart, liver, and kidney lysates containing intact lysosomes were obtained from 4-month-old adult male mice. First, lysates incubated with KFERQ-AMC displayed a time dependent (0-5 hour) increase in AMC fluorescence vs. lysates incubated with negative control peptides. These data validate the specificity of KFERQ for CMA. Of note, liver exhibited the highest CMA (6-fold; p<0.05) > kidney (2.4-fold) > heart (0.4-fold) at 5-hours. Second, E64D prevented KFERQ-AMC degradation, substantiating that KFERQ-AMC is degraded via lysosomes. Third, cleavage of KFERQ-AMC and resulting AMC fluorescence was inhibited in Human embryonic kidney (HEK) cells and H9c2 cardiac cells transfected with vs. control siRNA. Further, enhancing CMA using adenovirus upregulated KFERQ degradation. These data suggest that LAMP2A is required for KFERQ degradation. We have generated a novel assay for measuring CMA activity in cells and tissues in a variety of experimental contexts.
包括心血管疾病、癌症和神经疾病在内的多种病症是由错误折叠/受损蛋白质的积累所引起的。细胞内蛋白质降解机制在清除这些致病蛋白质过程中发挥着关键作用。伴侣介导的自噬(CMA)是一种蛋白质降解途径,该途径利用伴侣蛋白结合带有独特KFERQ样基序的蛋白质,以便将其递送至CMA特异性溶酶体相关膜蛋白2a(LAMP2a)受体进行溶酶体降解。迄今为止,稳态CMA功能是通过测量LAMP2A蛋白表达来评估的。然而,这并不能提供有关CMA降解活性的信息。为了填补测量CMA活性的工具/检测方法的空白,我们开发了一种CMA特异性荧光底物检测方法。
通过固相肽合成法合成了一种KFERQ-AMC[赖氨酸-苯丙氨酸-天冬氨酸-精氨酸-谷氨酰胺-AMC(7-氨基-4-甲基香豆素)]荧光CMA底物。KFERQ-AMC在通过溶酶体水解裂解时,会导致AMC释放并发出荧光(激发波长:355nm,发射波长:460nm)。使用负责裂解CMA底物的溶酶体蛋白酶抑制剂E64D[L-反式环氧琥珀酰亮氨酰胺(4-胍基)丁烷]来测定实际的CMA活性。本质上,为了确认KFERQ序列对CMA的特异性,使用了阴性对照肽。
从4个月大的成年雄性小鼠中获取了含有完整溶酶体的心脏、肝脏和肾脏裂解物。首先,与KFERQ-AMC孵育的裂解物与与阴性对照肽孵育的裂解物相比,AMC荧光呈现出时间依赖性(0-5小时)增加。这些数据验证了KFERQ对CMA的特异性。值得注意的是,在5小时时,肝脏的CMA活性最高(6倍;p<0.05)>肾脏(2.4倍)>心脏(0.4倍)。其次,E64D阻止了KFERQ-AMC的降解,证实KFERQ-AMC是通过溶酶体降解的。第三,在转染了对照小干扰RNA的人胚肾(HEK)细胞和H9c2心肌细胞中,KFERQ-AMC的裂解及由此产生的AMC荧光受到抑制。此外,使用腺病毒增强CMA可上调KFERQ的降解。这些数据表明LAMP2A对于KFERQ的降解是必需的。我们开发了一种新型检测方法,可在多种实验环境下测量细胞和组织中的CMA活性。