Suppr超能文献

当使用多重插补时的引导推断。

Bootstrap inference when using multiple imputation.

机构信息

Centre for Infectious Disease Epidemiology & Research, University of Cape Town, Falmouth Building, Observatory, Cape Town, 7925, South Africa.

Christian Heumann, Institut für Statistik, Ludwig-Maximilians Universität München, München, Germany.

出版信息

Stat Med. 2018 Jun 30;37(14):2252-2266. doi: 10.1002/sim.7654. Epub 2018 Apr 16.

Abstract

Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available.

摘要

许多现代估计量需要进行自举法来计算置信区间,因为要么没有可用的解析标准误差,要么感兴趣的参数的分布是非对称的。然而,当涉及到多重插补来处理缺失数据时,如何获得有效的自举推断仍然不清楚。我们提出了 4 种方法,这些方法直观上很有吸引力,易于实现,并将自举估计与多重插补相结合。我们表明,这 4 种方法中的 3 种方法可以得出有效的推断,但这些方法的性能因插补数据集的数量和缺失程度的不同而有所不同。模拟研究揭示了我们方法在有限样本中的行为。来自 HIV 治疗研究的一个主题分析,确定了在年幼儿童中开始抗逆转录病毒治疗的最佳时机,在一个复杂和现实的环境中展示了这 4 种方法的实际意义。该分析存在缺失数据,并使用 g 公式进行推断,该方法没有可用的标准误差。

相似文献

1
Bootstrap inference when using multiple imputation.
Stat Med. 2018 Jun 30;37(14):2252-2266. doi: 10.1002/sim.7654. Epub 2018 Apr 16.
2
Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data.
Stat Med. 2017 Oct 30;36(24):3807-3819. doi: 10.1002/sim.7389. Epub 2017 Jul 25.
3
Bayesian nonparametric generative models for causal inference with missing at random covariates.
Biometrics. 2018 Dec;74(4):1193-1202. doi: 10.1111/biom.12875. Epub 2018 Mar 26.
4
Identifiability and estimation of causal mediation effects with missing data.
Stat Med. 2017 Nov 10;36(25):3948-3965. doi: 10.1002/sim.7413. Epub 2017 Aug 7.
5
Using longitudinal targeted maximum likelihood estimation in complex settings with dynamic interventions.
Stat Med. 2019 Oct 30;38(24):4888-4911. doi: 10.1002/sim.8340. Epub 2019 Aug 22.
6
Bootstrap inference for multiple imputation under uncongeniality and misspecification.
Stat Methods Med Res. 2020 Dec;29(12):3533-3546. doi: 10.1177/0962280220932189. Epub 2020 Jun 30.
7
Variable selection under multiple imputation using the bootstrap in a prognostic study.
BMC Med Res Methodol. 2007 Jul 13;7:33. doi: 10.1186/1471-2288-7-33.
8
Smoothed empirical likelihood inference for ROC curve in the presence of missing biomarker values.
Biom J. 2020 Jul;62(4):1038-1059. doi: 10.1002/bimj.201900121. Epub 2020 Jan 20.
9
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.
10
Imputation approaches for potential outcomes in causal inference.
Int J Epidemiol. 2015 Oct;44(5):1731-7. doi: 10.1093/ije/dyv135. Epub 2015 Jul 25.

引用本文的文献

2
Estimating cardiovascular effects of influenza vaccination in older adults: a target trial emulation using proximal causal inference.
EClinicalMedicine. 2025 Aug 21;87:103449. doi: 10.1016/j.eclinm.2025.103449. eCollection 2025 Sep.
3
Frailty phenotype state transitions among older adults with a history of cancer and diabetes.
BMC Geriatr. 2025 Aug 14;25(1):624. doi: 10.1186/s12877-025-06309-6.

本文引用的文献

1
A New Procedure to Test Mediation With Missing Data Through Nonparametric Bootstrapping and Multiple Imputation.
Multivariate Behav Res. 2013 Sep;48(5):663-91. doi: 10.1080/00273171.2013.816235.
3
4
5
Commentary: Applying a causal road map in settings with time-dependent confounding.
Epidemiology. 2014 Nov;25(6):898-901. doi: 10.1097/EDE.0000000000000178.
6
Association of long-duration breastfeeding and dental caries estimated with marginal structural models.
Ann Epidemiol. 2014 Jun;24(6):448-54. doi: 10.1016/j.annepidem.2014.01.013. Epub 2014 Feb 17.
8
Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula.
Stat Biosci. 2011 Sep 1;3(1):119-143. doi: 10.1007/s12561-011-9040-7.
9
Methods for dealing with time-dependent confounding.
Stat Med. 2013 Apr 30;32(9):1584-618. doi: 10.1002/sim.5686. Epub 2012 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验