Rothstein Jeffrey D, Warlick Caroline, Coyne Alyssa N
Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205.
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205.
bioRxiv. 2023 Dec 13:2023.12.12.571299. doi: 10.1101/2023.12.12.571299.
The nuclear depletion and cytoplasmic aggregation of the RNA binding protein TDP-43 is widely considered a pathological hallmark of Amyotrophic Lateral Sclerosis (ALS) and related neurodegenerative diseases. Recent studies have artificially reduced TDP-43 in wildtype human neurons to replicate loss of function associated events. Although this prior work has defined a number of gene expression and mRNA splicing changes that occur in a TDP-43 dependent manner, it is unclear how these alterations relate to authentic ALS where TDP-43 is not depleted from the cell but miscompartmentalized to variable extents. Here, in this population study, we generate ~30,000 qRT-PCR data points spanning 20 genes in induced pluripotent stem cell (iPSC) derived neurons (iPSNs) from >150 control, C9orf72 ALS/FTD, and sALS patients to examine molecular signatures of TDP-43 dysfunction. This data set defines a time dependent and variable profile of individual molecular hallmarks of TDP-43 loss of function within and amongst individual patient lines. Importantly, nearly identical changes are observed in postmortem CNS tissues obtained from a subset of patients whose iPSNs were examined. Notably, these studies provide evidence that induction of nuclear pore complex (NPC) injury via reduction of the transmembrane Nup POM121 in wildtype iPSNs is sufficient to phenocopy disease associated signatured of TDP-43 loss of function thereby directly linking NPC integrity to TDP-43 loss of function. Therapeutically, we demonstrate that the expression of mRNA species associated with TDP-43 loss of function can be restored in sALS iPSNs via two independent methods to repair NPC injury. Collectively, this data 1) represents a substantial resource for the community to examine TDP-43 loss of function events in authentic sALS patient iPSNs, 2) demonstrates that patient derived iPSNs can accurately reflect actual TDP-43 associated alterations in patient brain, and 3) that targeting NPC injury events can be preclinically and reliably accomplished in an iPSN based platform of a sporadic disease.
RNA结合蛋白TDP - 43的核内耗竭和胞质聚集被广泛认为是肌萎缩侧索硬化症(ALS)及相关神经退行性疾病的病理标志。最近的研究已在野生型人类神经元中人为降低TDP - 43的水平,以重现与功能丧失相关的事件。尽管先前的这项工作已经确定了许多以TDP - 43依赖方式发生的基因表达和mRNA剪接变化,但尚不清楚这些改变与真正的ALS有何关联,在ALS中TDP - 43并非从细胞中耗竭,而是在不同程度上错误定位。在此项群体研究中,我们在来自150多名对照、C9orf72 ALS / FTD和散发性ALS(sALS)患者的诱导多能干细胞(iPSC)衍生神经元(iPSN)中,生成了跨越20个基因的约30,000个qRT - PCR数据点,以检查TDP - 43功能障碍的分子特征。该数据集定义了个体患者系内和个体患者系间TDP - 43功能丧失的各个分子标志的时间依赖性和可变特征。重要的是,在对其iPSN进行检查的一部分患者的尸检中枢神经系统组织中观察到了几乎相同的变化。值得注意的是,这些研究提供了证据,即通过降低野生型iPSN中的跨膜核孔蛋白POM121来诱导核孔复合体(NPC)损伤足以模拟与TDP - 43功能丧失相关的疾病特征,从而直接将NPC完整性与TDP - 43功能丧失联系起来。在治疗方面,我们证明通过两种独立方法修复NPC损伤,可在sALS iPSN中恢复与TDP - 43功能丧失相关的mRNA种类的表达。总体而言,这些数据1)为研究真正的sALS患者iPSN中TDP - 43功能丧失事件的研究群体提供了大量资源,2)证明患者来源的iPSN可以准确反映患者大脑中实际的TDP - 43相关改变,以及3)在散发性疾病的基于iPSN的平台上,针对NPC损伤事件可以在临床前可靠地实现。