Attar Ali Goktug, Paturej Jaroslaw, Banigan Edward J, Erbas Aykut
bioRxiv. 2024 Jan 30:2023.12.16.571697. doi: 10.1101/2023.12.16.571697.
Abnormalities in the shapes of mammalian cell nuclei are hallmarks of a variety of diseases, including progeria, muscular dystrophy, and various cancers. Experiments have shown that there is a causal relationship between chromatin organization and nuclear morphology. Decreases in heterochromatin levels, perturbations to heterochromatin organization, and increases in euchromatin levels all lead to misshapen nuclei, which exhibit deformations, such as nuclear blebs and nuclear ruptures. However, the polymer physical mechanisms of how chromatin governs nuclear shape and integrity are poorly understood. To investigate how heterochromatin and euchromatin, which are thought to microphase separate , govern nuclear morphology, we implemented a composite coarse-grained polymer and elastic shell model. By varying chromatin volume fraction (density), heterochromatin levels and structure, and heterochromatin-lamina interactions, we show how the spatial organization of chromatin polymer phases within the nucleus could perturb nuclear shape in some scenarios. Increasing the volume fraction of chromatin in the cell nucleus stabilizes the nuclear lamina against large fluctuations. However, surprisingly, we find that increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations in our simulations by a "wetting"-like interaction. In contrast, shape fluctuations are largely insensitive to the internal structure of the heterochromatin, such as the presence or absence of chromatin-chromatin crosslinks. Therefore, our simulations suggest that heterochromatin accumulation at the nuclear periphery could perturb nuclear morphology in a nucleus or nuclear region that is sufficiently soft, while stabilization of the nucleus via heterochromatin likely occurs through mechanisms other than chromatin microphase organization.
哺乳动物细胞核形状异常是多种疾病的标志,包括早衰症、肌肉萎缩症和各种癌症。实验表明,染色质组织与核形态之间存在因果关系。异染色质水平降低、异染色质组织受到干扰以及常染色质水平升高都会导致细胞核形状异常,表现出诸如核泡和核破裂等变形。然而,染色质如何控制核形状和完整性的聚合物物理机制却知之甚少。为了研究被认为会发生微相分离的异染色质和常染色质如何控制核形态,我们实施了一种复合粗粒聚合物和弹性壳模型。通过改变染色质体积分数(密度)、异染色质水平和结构以及异染色质与核纤层的相互作用,我们展示了细胞核内染色质聚合物相的空间组织在某些情况下如何扰乱核形状。增加细胞核中染色质的体积分数可稳定核纤层,使其免受大幅波动的影响。然而,令人惊讶的是,我们发现在我们的模拟中,增加异染色质水平或异染色质与核纤层的相互作用会通过类似“湿润”的相互作用增强核形状波动。相比之下,形状波动对异染色质的内部结构(如染色质 - 染色质交联的存在与否)基本不敏感。因此,我们的模拟表明,在足够柔软的细胞核或核区域中,异染色质在核周边的积累可能会扰乱核形态,而异染色质对细胞核的稳定作用可能是通过染色质微相组织以外的机制实现的。