Department of Chemistry, Iowa State University, Ames, Iowa.
Department of Physics, Northeastern University, Boston, Massachusetts.
Biophys J. 2021 Nov 16;120(22):5005-5017. doi: 10.1016/j.bpj.2021.10.012. Epub 2021 Oct 13.
The genetic material of eukaryotes is segregated into transcriptionally active euchromatin and silent heterochromatin compartments. The spatial arrangement of chromatin compartments evolves over the course of cellular life in a process that remains poorly understood. The latest nuclear imaging experiments reveal a number of dynamical signatures of chromatin that are reminiscent of active multiphase liquids. This includes the observations of viscoelastic response, coherent motions, Ostwald ripening, and coalescence of chromatin compartments. There is also growing evidence that liquid-liquid phase separation of protein and nucleic acid components is the underlying mechanism for the dynamical behavior of chromatin. To dissect the organizational and dynamical implications of chromatin's liquid behavior, we have devised a phenomenological field-theoretic model of the nucleus as a multiphase condensate of liquid chromatin types. Employing the liquid chromatin model of the Drosophila nucleus, we have carried out an extensive set of simulations with an objective to shed light on the dynamics and chromatin patterning observed in the latest nuclear imaging experiments. Our simulations reveal the emergence of experimentally detected mesoscale chromatin channels and spheroidal droplets which arise from the dynamic interplay of chromatin type to type interactions and intermingling of chromosomal territories. We also quantitatively reproduce coherent motions of chromatin domains observed in displacement correlation spectroscopy measurements which are explained within the framework of our model by phase separation of chromatin types operating within constrained intrachromosomal and interchromosomal boundaries. Finally, we illuminate the role of heterochromatin-lamina interactions in the nuclear organization by showing that these interactions enhance the mobility of euchromatin and indirectly introduce correlated motions of heterochromatin droplets.
真核生物的遗传物质被分隔成转录活跃的常染色质和沉默的异染色质区室。染色质区室的空间排列在细胞生命过程中发生演变,但其过程仍知之甚少。最新的核成像实验揭示了许多染色质的动力学特征,这些特征让人联想到活跃的多相液体。这包括观察到的粘弹性响应、相干运动、奥斯特瓦尔德熟化和染色质区室的聚结。越来越多的证据表明,蛋白质和核酸成分的液-液相分离是染色质动力学行为的潜在机制。为了解剖染色质液体行为的组织和动力学意义,我们设计了一种核的唯象场论模型,将其视为液体染色质类型的多相凝聚物。我们利用果蝇核的液体染色质模型,进行了一系列广泛的模拟,旨在阐明最新核成像实验中观察到的动力学和染色质模式。我们的模拟揭示了实验检测到的中尺度染色质通道和球形液滴的出现,这些通道和液滴是由不同类型染色质之间的相互作用和染色体区域的混合动态相互作用产生的。我们还定量再现了位移相关光谱测量中观察到的染色质域的相干运动,这在我们的模型框架内可以通过在约束性染色体内和染色体间边界内的染色质类型的相分离来解释。最后,我们通过表明异染色质-核纤层相互作用增强常染色质的流动性,并间接地引入异染色质液滴的相关运动,阐明了异染色质-核纤层相互作用在核组织中的作用。