Suppr超能文献

利用惯性测量单元估计行走和跑步时脊柱关节的运动学和动力学。

Using inertial measurement units to estimate spine joint kinematics and kinetics during walking and running.

机构信息

Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.

Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

Sci Rep. 2024 Jan 2;14(1):234. doi: 10.1038/s41598-023-50652-w.

Abstract

Optical motion capture (OMC) is considered the best available method for measuring spine kinematics, yet inertial measurement units (IMU) have the potential to collect data outside the laboratory. When combined with musculoskeletal modeling, IMU technology may be used to estimate spinal loads in real-world settings. To date, IMUs have not been validated for estimates of spinal movement and loading during both walking and running. Using OpenSim Thoracolumbar Spine and Ribcage models, we compare IMU and OMC estimates of lumbosacral (L5/S1) and thoracolumbar (T12/L1) joint angles, moments, and reaction forces during gait across six speeds for five participants. For comparisons, time series are ensemble averaged over strides. Comparisons between IMU and OMC ensemble averages have low normalized root mean squared errors (< 0.3 for 81% of comparisons) and high, positive cross-correlations (> 0.5 for 91% of comparisons), suggesting signals are similar in magnitude and trend. As expected, joint moments and reaction forces are higher during running than walking for IMU and OMC. Relative to OMC, IMU overestimates joint moments and underestimates joint reaction forces by 20.9% and 15.7%, respectively. The results suggest using a combination of IMU technology and musculoskeletal modeling is a valid means for estimating spinal movement and loading.

摘要

光学运动捕捉(OMC)被认为是测量脊柱运动学的最佳方法,但惯性测量单元(IMU)有可能在实验室外收集数据。当与肌肉骨骼建模相结合时,IMU 技术可用于估计真实环境中的脊柱负荷。迄今为止,IMU 尚未经过验证,无法用于估计行走和跑步过程中的脊柱运动和负荷。本研究使用 OpenSim 胸腰椎和肋骨模型,比较了 5 名参与者在 6 种速度下行走时,IMU 和 OMC 对腰骶部(L5/S1)和胸腰椎(T12/L1)关节角度、力矩和反作用力的估计值。为了进行比较,时间序列在步幅上进行了集合平均。IMU 和 OMC 集合平均值之间的比较具有较低的归一化均方根误差(<0.3,81%的比较)和较高的正互相关系数(>0.5,91%的比较),这表明信号在幅度和趋势上相似。与预期一致,与行走相比,IMU 和 OMC 在跑步时的关节力矩和反作用力更高。与 OMC 相比,IMU 分别高估了关节力矩和低估了关节反作用力,分别为 20.9%和 15.7%。结果表明,结合使用 IMU 技术和肌肉骨骼建模是估计脊柱运动和负荷的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a13d/10762015/91d07197008b/41598_2023_50652_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验