Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
Sensors (Basel). 2024 Oct 4;24(19):6440. doi: 10.3390/s24196440.
Accurate measurement of pedaling kinetics and kinematics is vital for optimizing rehabilitation, exercise training, and understanding musculoskeletal biomechanics. Pedal reaction force, the main external force in cycling, is essential for musculoskeletal modeling and closely correlates with lower-limb muscle activity and joint reaction forces. However, sensor instrumentation like 3-axis pedal force sensors is costly and requires extensive postprocessing. Recent advancements in machine learning (ML), particularly neural network (NN) models, provide promising solutions for kinetic analyses. In this study, an NN model was developed to predict radial and mediolateral forces, providing a low-cost solution to study pedaling biomechanics with stationary cycling ergometers. Fifteen healthy individuals performed a 2 min pedaling task at two different self-selected (58 ± 5 RPM) and higher (72 ± 7 RPM) cadences. Pedal forces were recorded using a 3-axis force system. The dataset included pedal force, crank angle, cadence, power, and participants' weight and height. The NN model achieved an inter-subject normalized root mean square error (nRMSE) of 0.15 ± 0.02 and 0.26 ± 0.05 for radial and mediolateral forces at high cadence, respectively, and 0.20 ± 0.04 and 0.22 ± 0.04 at self-selected cadence. The NN model's low computational time suits real-time pedal force predictions, matching the accuracy of previous ML algorithms for estimating ground reaction forces in gait.
准确测量踏蹬动力学和运动学对于优化康复、运动训练和理解肌肉骨骼生物力学至关重要。踏蹬反作用力是骑行中的主要外力,对于肌肉骨骼建模至关重要,并且与下肢肌肉活动和关节反作用力密切相关。然而,像三轴踏蹬力传感器这样的传感器仪器成本高昂,并且需要广泛的后处理。机器学习(ML)的最新进展,特别是神经网络(NN)模型,为动力学分析提供了有前途的解决方案。在这项研究中,开发了一个 NN 模型来预测径向和横向力,为使用固定式自行车测力计研究踏蹬生物力学提供了一种低成本的解决方案。十五名健康个体以两种不同的自选择(58 ± 5 RPM)和较高(72 ± 7 RPM)的转速进行了 2 分钟的踏蹬任务。使用三轴力系统记录踏蹬力。数据集包括踏蹬力、曲柄角度、转速、功率以及参与者的体重和身高。NN 模型在高转速下分别实现了径向和横向力的跨个体归一化均方根误差(nRMSE)为 0.15 ± 0.02 和 0.26 ± 0.05,在自选择转速下分别为 0.20 ± 0.04 和 0.22 ± 0.04。NN 模型的低计算时间适合实时踏蹬力预测,与之前用于估计步态中地面反作用力的 ML 算法的准确性相匹配。