Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.
J Neuroradiol. 2024 Jun;51(4):101171. doi: 10.1016/j.neurad.2023.11.006. Epub 2024 Jan 2.
Accurate differentiation between multinodular and vacuolating neuronal tumor (MVNT) and dysembryoplastic neuroepithelial tumor (DNET) is important for treatment decision-making. We aimed to develop an accurate radiologic diagnostic model for differentiating MVNT from DNET using T2WI and diffusion-weighted imaging (DWI).
A total of 56 patients (mean age, 47.48±17.78 years; 31 women) diagnosed with MVNT (n = 37) or DNET (n = 19) who underwent brain MRI, including T2WI and DWI, were included. Two board-certified neuroradiologists performed qualitative (bubble appearance, cortical involvement, bright diffusion sign, and bright apparent diffusion coefficient [ADC] sign) and quantitative (nDWI and nADC) assessments. A diagnostic tree model was developed with significant and reliable imaging findings using an exhaustive chi-squared Automatic Interaction Detector (CHAID) algorithm.
In visual assessment, the imaging features that showed high diagnostic accuracy and interobserver reliability were the bright diffusion sign and absence of cortical involvement (bright diffusion sign: accuracy, 94.64 %; sensitivity, 91.89 %; specificity, 100.00 %; interobserver agreement, 1.00; absence of cortical involvement: accuracy, 92.86 %; sensitivity, 89.19 %; specificity, 100.00 %; interobserver agreement, 1.00). In quantitative analysis, nDWI was significantly higher in MVNT than in DENT (1.52 ± 0.34 vs. 0.91 ± 0.27, p < 0.001), but the interobserver agreement was fair (intraclass correlation coefficient = 0.321). The overall diagnostic accuracy of the tree model with visual assessment parameters was 98.21 % (55/56).
The bright diffusion sign and absence of cortical involvement are accurate and reliable imaging findings for differentiating MVNT from DNET. By using simple, intuitive, and reliable imaging findings, such as the bright diffusion sign, MVNT can be accurately differentiated from DNET.
准确区分多结节性和空泡神经元肿瘤(MVNT)与发育不良性神经上皮肿瘤(DNET)对于治疗决策非常重要。本研究旨在利用 T2WI 和弥散加权成像(DWI)建立一种准确的影像学诊断模型,用于区分 MVNT 和 DNET。
共纳入 56 例(平均年龄 47.48±17.78 岁;31 例女性)经 MRI 检查(包括 T2WI 和 DWI)诊断为 MVNT(n=37)或 DNET(n=19)的患者。两名具有资质的神经放射科医师对病变的外观(囊泡样外观、皮质累及、弥散高亮信号和弥散 ADC 值升高信号)进行定性评估,并对表观弥散系数(ADC)值进行定量评估。采用穷尽式卡方自动交互检测(CHAID)算法,基于有统计学意义且可靠的影像学表现建立诊断树模型。
在视觉评估中,弥散高亮信号和无皮质累及是具有高诊断准确性和观察者间可靠性的影像学特征(弥散高亮信号:准确性为 94.64%,敏感度为 91.89%,特异度为 100.00%,观察者间一致性为 1.00;无皮质累及:准确性为 92.86%,敏感度为 89.19%,特异度为 100.00%,观察者间一致性为 1.00)。定量分析中,MVNT 的 nDWI 值明显高于 DNET(1.52±0.34 比 0.91±0.27,p<0.001),但观察者间一致性为中等(组内相关系数=0.321)。基于视觉评估参数的树模型整体诊断准确性为 98.21%(55/56)。
弥散高亮信号和无皮质累及是区分 MVNT 和 DNET 的准确且可靠的影像学特征。通过利用弥散高亮信号等简单、直观且可靠的影像学表现,可以准确地区分 MVNT 和 DNET。