Luo Shuang, Misra Rahul Prasanna, Blankschtein Daniel
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2024 Jan 16;18(2):1629-1646. doi: 10.1021/acsnano.3c09811. Epub 2024 Jan 3.
Understanding the behavior of water contacting two-dimensional materials, such as hexagonal boron nitride (hBN), is important in practical applications, including seawater desalination and energy harvesting. Water, being a polar solvent, can strongly polarize the hBN surface via the electric fields that it generates. However, there is a lack of molecular-level understanding about the role of polarization effects at the hBN/water interface, including its effect on the wetting properties of water. In this study, we develop a theoretical framework that introduces an all-atomistic polarizable force field to accurately model the interactions of water molecules with hBN surfaces. The force field is then utilized to self-consistently describe the water-induced polarization of hBN using the classical Drude oscillator model, including predicting the hBN-water binding energies which are found to be in excellent agreement with diffusion Monte Carlo (DMC) predictions. By carrying out molecular dynamics (MD) simulations, we demonstrate that the polarizable force field yields a water contact angle on multilayered hBN which is in close agreement with the recent experimentally reported values. Conversely, an implicit modeling of the hBN-water polarization energy utilizing a Lennard-Jones (LJ) potential, a commonly utilized approximation in previous MD simulation studies, leads to a considerably lower water contact angle. This difference in the predicted contact angles is attributed to the significant energy-entropy compensation resulting from the incorporation of polarization effects at the hBN-water interface. Our work highlights the importance of self-consistently modeling the hBN-water polarization energy and offers insights into the wetting-related interfacial phenomena of water on polarizable materials.
了解水与二维材料(如六方氮化硼(hBN))的相互作用行为在包括海水淡化和能量收集在内的实际应用中至关重要。水作为一种极性溶剂,能够通过其产生的电场强烈极化hBN表面。然而,目前对于hBN/水界面处极化效应的作用,包括其对水的润湿性的影响,缺乏分子层面的理解。在本研究中,我们开发了一个理论框架,引入全原子可极化力场来精确模拟水分子与hBN表面的相互作用。然后利用该力场,通过经典的德鲁德振子模型自洽地描述hBN的水诱导极化,包括预测hBN - 水结合能,发现其与扩散蒙特卡罗(DMC)预测结果高度吻合。通过进行分子动力学(MD)模拟,我们证明可极化力场在多层hBN上产生的水接触角与最近实验报道的值非常吻合。相反,在先前的MD模拟研究中常用的一种近似方法,即利用 Lennard - Jones(LJ)势对hBN - 水极化能进行隐式建模,会导致水接触角显著降低。预测接触角的这种差异归因于hBN - 水界面处极化效应所导致的显著的能量 - 熵补偿。我们的工作突出了自洽地对hBN - 水极化能进行建模的重要性,并为水在可极化材料上与润湿相关的界面现象提供了见解。