Department of Electrical and Computer Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA 98195, USA.
Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Mbagathi Rd, Nairobi 610101, Kenya.
Sci Adv. 2024 Jan 5;10(1):eadi0282. doi: 10.1126/sciadv.adi0282. Epub 2024 Jan 3.
Recent respiratory disease screening studies suggest promising performance of cough classifiers, but potential biases in model training and dataset quality preclude robust conclusions. To examine tuberculosis (TB) cough diagnostic features, we enrolled subjects with pulmonary TB ( = 149) and controls with other respiratory illnesses ( = 46) in Nairobi. We collected a dataset with 33,000 passive coughs and 1600 forced coughs in a controlled setting with similar demographics. We trained a ResNet18-based cough classifier using images of passive cough scalogram as input and obtained a fivefold cross-validation sensitivity of 0.70 (±0.11 SD). The smartphone-based model had better performance in subjects with higher bacterial load {receiver operating characteristic-area under the curve (ROC-AUC): 0.87 [95% confidence interval (CI): 0.87 to 0.88], < 0.001} or lung cavities [ROC-AUC: 0.89 (95% CI: 0.88 to 0.89), < 0.001]. Overall, our data suggest that passive cough features distinguish TB from non-TB subjects and are associated with bacterial burden and disease severity.
最近的呼吸道疾病筛查研究表明咳嗽分类器具有很有前景的性能,但模型训练和数据集质量中的潜在偏差排除了稳健结论的得出。为了研究结核病(TB)咳嗽的诊断特征,我们在内罗毕招募了患有肺结核(TB)的受试者(=149)和患有其他呼吸道疾病的对照受试者(=46)。我们在一个具有相似人口统计学特征的受控环境中收集了一个包含 33000 次被动咳嗽和 1600 次强制咳嗽的数据集。我们使用被动咳嗽声谱图的图像作为输入,训练了一个基于 ResNet18 的咳嗽分类器,五重交叉验证的敏感性为 0.70(±0.11 SD)。在细菌负荷较高的受试者中,基于智能手机的模型具有更好的性能{受试者工作特征曲线下面积(ROC-AUC):0.87 [95%置信区间(CI):0.87 至 0.88],<0.001}或肺空洞[ROC-AUC:0.89(95% CI:0.88 至 0.89),<0.001]。总体而言,我们的数据表明,被动咳嗽特征可区分 TB 与非 TB 受试者,并且与细菌负荷和疾病严重程度相关。