Moya Carlos, Escoda-Torroella Mariona, Rodríguez-Álvarez Javier, Figueroa Adriana I, García Íker, Ferrer-Vidal Inés Batalla, Gallo-Cordova A, Puerto Morales M, Aballe Lucía, Fraile Rodríguez Arantxa, Labarta Amílcar, Batlle Xavier
Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
Nanoscale. 2024 Jan 25;16(4):1942-1951. doi: 10.1039/d3nr04608g.
Iron oxide nanoflowers (IONF) are densely packed multi-core aggregates known for their high saturation magnetization and initial susceptibility, as well as low remanence and coercive field. This study reports on how the local magnetic texture originating at the crystalline correlations among the cores determines the special magnetic properties of individual IONF over a wide size range from 40 to 400 nm. Regardless of this significant size variation in the aggregates, all samples exhibit a consistent crystalline correlation that extends well beyond the IONF cores. Furthermore, a nearly zero remnant magnetization, together with the presence of a persistently blocked state, and almost temperature-independent field-cooled magnetization, support the existence of a 3D magnetic texture throughout the IONF. This is confirmed by magnetic transmission X-ray microscopy images of tens of individual IONF, showing, in all cases, a nearly demagnetized state caused by the vorticity of the magnetic texture. Micromagnetic simulations agree well with these experimental findings, showing that the interplay between the inter-core direct exchange coupling and the demagnetizing field is responsible for the highly vortex-like spin configuration that stabilizes at low magnetic fields and appears to have partial topological protection. Overall, this comprehensive study provides valuable insights into the impact of crystalline texture on the magnetic properties of IONF over a wide size range, offering a deeper understanding of their potential applications in fields such as biomedicine and water remediation.
氧化铁纳米花(IONF)是紧密堆积的多核聚集体,以其高饱和磁化强度、初始磁化率以及低剩磁和矫顽场而闻名。本研究报告了源于核间晶体相关性的局部磁织构如何在40至400纳米的宽尺寸范围内决定单个IONF的特殊磁性能。尽管聚集体存在显著的尺寸变化,但所有样品都表现出一致的晶体相关性,这种相关性延伸到IONF核之外很远的地方。此外,几乎为零的剩余磁化强度、持续阻塞状态的存在以及几乎与温度无关的场冷磁化强度,都支持在整个IONF中存在三维磁织构。数十个单个IONF的磁透射X射线显微镜图像证实了这一点,在所有情况下,这些图像都显示出由磁织构的涡度导致的几乎退磁状态。微磁模拟与这些实验结果非常吻合,表明核间直接交换耦合与退磁场之间的相互作用导致了在低磁场下稳定且似乎具有部分拓扑保护的高度涡旋状自旋构型。总体而言,这项全面的研究为晶体织构在宽尺寸范围内对IONF磁性能的影响提供了有价值的见解,有助于更深入地理解它们在生物医学和水净化等领域的潜在应用。
Nanoscale. 2024-1-25
Science. 2002-10-18
Nanoscale. 2017-8-10
J Phys Condens Matter. 2022-3-31
ACS Nano. 2016-1-13
J Nanosci Nanotechnol. 2011-5
ACS Appl Mater Interfaces. 2025-8-20