Suppr超能文献

来自L.和L.根际的潜在固氮细菌的多样性

Diversity of potential nitrogen-fixing bacteria from rhizosphere of the L. and L.

作者信息

Bullergahn Vilian Borchardt, Menezes Karen Mirella Souza, Veloso Tomás Gomes Reis, da Luz José Maria Rodrigues, Castanheira Lucas Ferreira, Pereira Lucas Louzada, da Silva Marliane de Cássia Soares

机构信息

Microbiology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil.

Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil.

出版信息

3 Biotech. 2024 Jan;14(1):27. doi: 10.1007/s13205-023-03875-7. Epub 2024 Jan 2.

Abstract

L. and L. are coffee species most consumed and marketed in the world. The coffee crop requires a large amount of nitrogen, which shows the importance of knowledge of the population of nitrogen-fixing bacteria (NFB) from the rhizosphere of these crops. These microorganisms may help the reduction of nitrogen fertilizing. However, there is no production of NFB inoculum in the coffee. Therefore, our objective was to evaluate the diversity of potential nitrogen-fixing bacteria (PNFB) in the rhizosphere of and . The microbial DNA of the soil was extracted, amplified through PCR, and sequenced at the Illumina Miseq. platform. The PNFB prediction was performed using the program PICRUSt2. Three hundred and thirty-seven amplicon sequence variants (ASVs) were identified as PNFB in two coffee species. , , , and sp. were detected in all samples and main components of the core microbiota of the coffee plant rhizosphere. Some ASVs are exclusive from one of the coffee farms, showing that the coffee specie cultivated may influence the PNFB communities. However, edaphoclimatic factors and soil chemical attributes can also influence the distribution of ASVs in coffee soil. In the , the PNFB diversity was influenced by the altitude and the soil chemical attributes, while the altitude and the phosphorus content influenced the PNFB population in . Our results are important to the understanding of the PNFB dynamic in coffee soil and for the agricultural inputs bioprospecting to coffee.

摘要

罗布斯塔咖啡和阿拉比卡咖啡是世界上消费和销售最多的咖啡品种。咖啡作物需要大量的氮,这表明了解这些作物根际固氮细菌(NFB)种群的重要性。这些微生物可能有助于减少氮肥的使用。然而,咖啡中没有生产NFB接种物。因此,我们的目标是评估罗布斯塔咖啡和阿拉比卡咖啡根际潜在固氮细菌(PNFB)的多样性。提取土壤的微生物DNA,通过PCR进行扩增,并在Illumina Miseq平台上进行测序。使用PICRUSt2程序进行PNFB预测。在两种咖啡品种中,有337个扩增子序列变体(ASV)被鉴定为PNFB。在所有样品中均检测到伯克霍尔德菌属、假单胞菌属、根瘤菌属和贪铜菌属,它们是咖啡植物根际核心微生物群的主要组成部分。一些ASV是某个咖啡农场独有的,这表明种植的咖啡品种可能会影响PNFB群落。然而,土壤气候因素和土壤化学属性也会影响ASV在咖啡土壤中的分布。在罗布斯塔咖啡中,PNFB多样性受海拔和土壤化学属性的影响,而在阿拉比卡咖啡中,海拔和磷含量影响PNFB种群。我们的研究结果对于理解咖啡土壤中PNFB的动态以及咖啡农业投入物的生物勘探具有重要意义。

相似文献

1
Diversity of potential nitrogen-fixing bacteria from rhizosphere of the L. and L.
3 Biotech. 2024 Jan;14(1):27. doi: 10.1007/s13205-023-03875-7. Epub 2024 Jan 2.
2
The Rhizosphere Microbiomes of Five Species of Coffee Trees.
Microbiol Spectr. 2022 Apr 27;10(2):e0044422. doi: 10.1128/spectrum.00444-22. Epub 2022 Mar 15.
6
Coffea arabica and C. canephora discrimination in roasted and ground coffee from reference material candidates by real-time PCR.
Food Res Int. 2019 Jan;115:227-233. doi: 10.1016/j.foodres.2018.08.086. Epub 2018 Aug 29.
8
Effects of Coffea canephora genotypes on the microbial community of soil and fruit.
Sci Rep. 2024 Nov 23;14(1):29035. doi: 10.1038/s41598-024-80403-4.
9
Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.
PLoS One. 2015 Jun 17;10(6):e0106355. doi: 10.1371/journal.pone.0106355. eCollection 2015.

引用本文的文献

1
Analysis of the Genomes and Adaptive Traits of sp. nov., a Human Skin Isolate, and the Type Strains and .
Microorganisms. 2025 Jan 6;13(1):94. doi: 10.3390/microorganisms13010094.
2
Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L.
Environ Microbiome. 2024 Oct 15;19(1):75. doi: 10.1186/s40793-024-00619-9.

本文引用的文献

1
Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production.
Front Microbiol. 2022 Jul 14;13:916488. doi: 10.3389/fmicb.2022.916488. eCollection 2022.
3
The Rhizosphere Microbiomes of Five Species of Coffee Trees.
Microbiol Spectr. 2022 Apr 27;10(2):e0044422. doi: 10.1128/spectrum.00444-22. Epub 2022 Mar 15.
5
Impact of Intercropping on the Diazotrophic Community in the Soils of Continuous Cucumber Cropping Systems.
Front Microbiol. 2021 Mar 31;12:630302. doi: 10.3389/fmicb.2021.630302. eCollection 2021.
6
Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil.
Sci Rep. 2020 Sep 7;10(1):14692. doi: 10.1038/s41598-020-71309-y.
7
Plant species identity drives soil microbial community structures that persist under a following crop.
Ecol Evol. 2020 Jul 23;10(16):8652-8668. doi: 10.1002/ece3.6560. eCollection 2020 Aug.
8
First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato.
Sci Rep. 2020 Jul 30;10(1):12893. doi: 10.1038/s41598-020-69782-6.
9
Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota.
Environ Microbiol. 2020 Sep;22(9):3803-3822. doi: 10.1111/1462-2920.15151. Epub 2020 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验