Suppr超能文献

通过分析结构和傅里叶变换红外光谱数据确定锌 - 氨基酸配合物的最优密度泛函理论方法。

Optimal density-functional theory method for zinc-amino acid complexes determined by analyzing structural and Fourier-transform infrared spectroscopy data.

作者信息

Yoon Unghwi, Kim Jongsik, Kim Sang Hoon, Jeong Keunhong

机构信息

Extreme Materials Research Center, Korea Institute of Science and Technology (KIST) Seoul 02792 South Korea

Division of Nano & Information Technology at KIST School, University of Science and Technology (UST) Daejeon 34113 South Korea.

出版信息

RSC Adv. 2024 Jan 2;14(2):1051-1055. doi: 10.1039/d3ra07172c.

Abstract

Metal-amino acid complexes are important compounds for the human body. Their nutritional value and anticancer, antibacterial, and catalytic properties are the focus of several studies. Density functional theory (DFT) can be used to predict their properties by optimizing their structures and performing electron population analyses. However, conventional computational methods cannot adequately determine the parameters of polymeric metal-amino acid complexes. Therefore, intermolecular interactions of polymers must be considered to correctly predict the properties of metal-amino acid and related metal complexes. In this study, different DFT protocols were used to acquire the infrared spectra and determine interatomic distances of two zinc-amino acid complexes, Zn(Gly) and Zn(Met). The results were compared to spectroscopic and X-ray crystallographic data, revealing that the M06 and M06-L functionals and the 6-311++G(d,p) basis set produced the smallest computational errors. Our results provide a foundation for future theoretical studies on other metal-amino acid and metal-organic complexes.

摘要

金属-氨基酸络合物是对人体重要的化合物。它们的营养价值以及抗癌、抗菌和催化特性是多项研究的重点。密度泛函理论(DFT)可通过优化其结构并进行电子布居分析来预测它们的性质。然而,传统的计算方法无法充分确定聚合金属-氨基酸络合物的参数。因此,必须考虑聚合物的分子间相互作用,以便正确预测金属-氨基酸及相关金属络合物的性质。在本研究中,使用了不同的DFT方法来获取两种锌-氨基酸络合物Zn(Gly)和Zn(Met)的红外光谱并确定原子间距离。将结果与光谱和X射线晶体学数据进行比较,结果表明M06和M06-L泛函以及6-311++G(d,p)基组产生的计算误差最小。我们的结果为未来对其他金属-氨基酸和金属有机络合物的理论研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5648/10759963/46df250d30a3/d3ra07172c-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验