Suppr超能文献

OP-FCNN:一种用于透过散射介质成像的光电全卷积神经网络。

OP-FCNN: an optronic fully convolutional neural network for imaging through scattering media.

作者信息

Huang Zicheng, Gu Ziyu, Shi Mengyang, Gao Yesheng, Liu Xingzhao

出版信息

Opt Express. 2024 Jan 1;32(1):444-456. doi: 10.1364/OE.511169.

Abstract

Imaging through scattering media is a classical inverse issue in computational imaging. In recent years, deep learning(DL) methods have excelled in speckle reconstruction by extracting the correlation of speckle patterns. However, high-performance DL-based speckle reconstruction also costs huge hardware computation and energy consumption. Here, we develop an opto-electronic DL method with low computation complexity for imaging through scattering media. We design the "end-to-end" optronic structure for speckle reconstruction, namely optronic fully convolutional neural network (OP-FCNN). In OP-FCNN, we utilize lens groups and spatial light modulators to implement the convolution, down/up-sampling, and skip connection in optics, which significantly reduces the computational complexity by two orders of magnitude, compared with the digital CNN. Moreover, the reconfigurable and scalable structure supports the OP-FCNN to further improve imaging performance and accommodate object datasets of varying complexity. We utilize MNIST handwritten digits, EMNIST handwritten letters, fashion MNIST, and MIT-CBCL-face datasets to validate the OP-FCNN imaging performance through random diffusers. Our OP-FCNN reveals a good balance between computational complexity and imaging performance. The average imaging performance on four datasets achieves 0.84, 0.91, 0.79, and 16.3dB for JI, PCC, SSIM, and PSNR, respectively. The OP-FCNN paves the way for all-optical systems in imaging through scattering media.

摘要

透过散射介质成像在计算成像中是一个经典的逆问题。近年来,深度学习(DL)方法通过提取散斑图案的相关性在散斑重建方面表现出色。然而,基于深度学习的高性能散斑重建也需要巨大的硬件计算量和能量消耗。在此,我们开发了一种用于透过散射介质成像的具有低计算复杂度的光电深度学习方法。我们设计了用于散斑重建的“端到端”光电结构,即光电全卷积神经网络(OP-FCNN)。在OP-FCNN中,我们利用透镜组和空间光调制器在光学上实现卷积、下采样/上采样以及跳跃连接,与数字卷积神经网络相比,这显著降低了两个数量级的计算复杂度。此外,可重构和可扩展的结构支持OP-FCNN进一步提高成像性能并适应不同复杂度的对象数据集。我们利用MNIST手写数字、EMNIST手写字母、时尚MNIST和MIT-CBCL面部数据集,通过随机扩散器来验证OP-FCNN的成像性能。我们的OP-FCNN在计算复杂度和成像性能之间展现出良好的平衡。在四个数据集上的平均成像性能对于JI、PCC、SSIM和PSNR分别达到0.84、0.91、0.79和16.3dB。OP-FCNN为透过散射介质成像的全光系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验