Suppr超能文献

基于超快卷积光学神经网络的无记忆散射成像

Memory-less scattering imaging with ultrafast convolutional optical neural networks.

作者信息

Zhang Yuchao, Zhang Qiming, Yu Haoyi, Zhang Yinan, Luan Haitao, Gu Min

机构信息

Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China.

Zhangjiang Laboratory, Shanghai 200093, China.

出版信息

Sci Adv. 2024 Jun 14;10(24):eadn2205. doi: 10.1126/sciadv.adn2205.

Abstract

The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.

摘要

包括浑浊组织和散斑层在内的复杂散射介质中的光学记忆效应,一直是宏观和微观成像方法的关键基础。然而,尚未实现从没有光学记忆效应的强散射介质中进行图像重建。在此,我们通过开发一种与以光速运行的多个并行内核集成的多级卷积光学神经网络(ONN),展示了通过不存在光学记忆效应的散射层进行图像重建的方法。利用强散射过程训练这种基于傅里叶光学的、并行的、一步卷积ONN以进行直接特征提取,我们实现了无记忆图像重建,视场扩大了高达271倍。该设备可动态重新配置,用于超快多任务图像重建,计算能力为每秒1.57千万亿次运算(POPS)。我们的成果建立了一个用于图形处理的超快且高能效的光学机器学习平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9fd/11177939/13963304186d/sciadv.adn2205-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验