Suppr超能文献

基于单试 EEG 周期图的视觉刺激反应时间的深度神经网络估计。

Deep Neural Network for Visual Stimulus-Based Reaction Time Estimation Using the Periodogram of Single-Trial EEG.

机构信息

School of Electrical, Computer & Energy Engineering, Arizona State University, Tempe, AZ 85281, USA.

Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA.

出版信息

Sensors (Basel). 2020 Oct 27;20(21):6090. doi: 10.3390/s20216090.

Abstract

Multiplexed deep neural networks (DNN) have engendered high-performance predictive models gaining popularity for decoding brain waves, extensively collected in the form of electroencephalogram (EEG) signals. In this paper, to the best of our knowledge, we introduce a first-ever DNN-based generalized approach to estimate reaction time (RT) using the periodogram representation of single-trial EEG in a visual stimulus-response experiment with 48 participants. We have designed a Fully Connected Neural Network (FCNN) and a Convolutional Neural Network (CNN) to predict and classify RTs for each trial. Though deep neural networks are widely known for classification applications, cascading FCNN/CNN with the Random Forest model, we designed a robust regression-based estimator to predict RT. With the FCNN model, the accuracies obtained for binary and 3-class classification were 93% and 76%, respectively, which further improved with the use of CNN (94% and 78%, respectively). The regression-based approach predicted RTs with correlation coefficients (CC) of 0.78 and 0.80 for FCNN and CNN, respectively. Investigating further, we found that the left central as well as parietal and occipital lobes were crucial for predicting RT, with significant activities in the and frequency bands.

摘要

多重深度神经网络 (DNN) 已经产生了高性能的预测模型,这些模型在解码脑波方面越来越受欢迎,脑波广泛以脑电图 (EEG) 信号的形式进行采集。在本文中,据我们所知,我们首次引入了一种基于 DNN 的通用方法,使用单试 EEG 的周期图表示来估计视觉刺激反应实验中的反应时间 (RT),该实验共有 48 名参与者。我们设计了一个全连接神经网络 (FCNN) 和一个卷积神经网络 (CNN) 来预测和分类每个试验的 RT。虽然深度神经网络广泛用于分类应用,但我们将 FCNN/CNN 与随机森林模型级联,设计了一个基于稳健回归的估计器来预测 RT。使用 FCNN 模型,二进制和 3 类分类的准确率分别为 93%和 76%,而使用 CNN 进一步提高了这一准确率(分别为 94%和 78%)。基于回归的方法预测 RT 的相关系数 (CC) 分别为 0.78 和 0.80。进一步研究发现,左中央以及顶叶和枕叶对于预测 RT 至关重要,在 和 频段有显著的活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24bd/7662233/0fa42e307580/sensors-20-06090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验