Liu Zhi-Qiang, Liu Lei, Meng Zhuang-Zhuang, Tan Lei, Liu Wu-Ming
Opt Express. 2024 Jan 1;32(1):722-741. doi: 10.1364/OE.504580.
We propose a mechanism to simultaneously enhance quantum cooling and entanglement via coupling an auxiliary microwave cavity to a magnomechanical cavity. The auxiliary cavity acts as a dissipative cold reservoir that can efficiently cool multiple localized modes in the primary system via beam-splitter interactions, which enables us to obtain strong quantum cooling and entanglement. We analyze the stability of the system and determine the optimal parameter regime for cooling and entanglement under the auxiliary-microwave-cavity-assisted (AMCA) scheme. The maximum cooling enhancement rate of the magnon mode can reach 98.53, which clearly reveals that the magnomechanical cooling is significantly improved in the presence of the AMCA. More importantly, the dual-mode entanglement of the system can also be significantly enhanced by AMCA in the full parameter region, where the initial magnon-phonon entanglement can be maximally enhanced by a factor of about 11. Another important result of the AMCA is that it also increases the robustness of the entanglement against temperature. Our approach provides a promising platform for the experimental realization of entanglement and quantum information processing based on cavity magnomechanics.
我们提出了一种通过将辅助微波腔与磁机械腔耦合来同时增强量子冷却和纠缠的机制。辅助腔充当耗散冷库,它可以通过分束器相互作用有效地冷却主系统中的多个局域模式,这使我们能够获得强量子冷却和纠缠。我们分析了系统的稳定性,并确定了在辅助微波腔辅助(AMCA)方案下冷却和纠缠的最佳参数范围。磁振子模式的最大冷却增强率可达98.53,这清楚地表明在AMCA存在的情况下磁机械冷却得到了显著改善。更重要的是,在整个参数区域中,AMCA还可以显著增强系统的双模纠缠,其中初始磁振子 - 声子纠缠可以最大程度地增强约11倍。AMCA的另一个重要结果是它还提高了纠缠对温度的鲁棒性。我们的方法为基于腔磁机械学的纠缠和量子信息处理的实验实现提供了一个有前景的平台。