Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
Departamento de Física 'J. J. Giambiagi' and IFIBA, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina.
Nat Comput Sci. 2023 Jun;3(6):542-551. doi: 10.1038/s43588-023-00467-6. Epub 2023 Jun 26.
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is exciting. Understanding how QNN properties (for example, the number of parameters M) affect the loss landscape is crucial to designing scalable QNN architectures. Here we rigorously analyze the overparametrization phenomenon in QNNs, defining overparametrization as the regime where the QNN has more than a critical number of parameters M allowing it to explore all relevant directions in state space. Our main results show that the dimension of the Lie algebra obtained from the generators of the QNN is an upper bound for M, and for the maximal rank that the quantum Fisher information and Hessian matrices can reach. Underparametrized QNNs have spurious local minima in the loss landscape that start disappearing when M ≥ M. Thus, the overparametrization onset corresponds to a computational phase transition where the QNN trainability is greatly improved. We then connect the notion of overparametrization to the QNN capacity, so that when a QNN is overparametrized, its capacity achieves its maximum possible value.
实现量子神经网络(QNN)量子优势的前景令人兴奋。了解 QNN 属性(例如,参数数量 M)如何影响损失景观对于设计可扩展的 QNN 架构至关重要。在这里,我们严格分析了 QNN 中的过参数化现象,将过参数化定义为 QNN 具有超过临界数量的参数 M 的状态,允许它探索状态空间中的所有相关方向。我们的主要结果表明,从 QNN 的生成器获得的李代数的维度是 M 的上限,以及量子 Fisher 信息和 Hessian 矩阵可以达到的最大秩。欠参数化的 QNN 在损失景观中有虚假的局部最小值,当 M≥M 时开始消失。因此,过参数化的开始对应于一个计算相变,其中 QNN 的可训练性得到了极大的提高。然后,我们将过参数化的概念与 QNN 的容量联系起来,因此当 QNN 过参数化时,其容量达到最大可能值。