Zhang Bingzhi, Liu Junyu, Wu Xiao-Chuan, Jiang Liang, Zhuang Quntao
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
Nat Commun. 2024 Oct 29;15(1):9354. doi: 10.1038/s41467-024-53769-2.
Understanding the training dynamics of quantum neural networks is a fundamental task in quantum information science with wide impact in physics, chemistry and machine learning. In this work, we show that the late-time training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations, leading to a transcritical bifurcation transition in the dynamics. When the targeted value of loss function crosses the minimum achievable value from above to below, the dynamics evolve from a frozen-kernel dynamics to a frozen-error dynamics, showing a duality between the quantum neural tangent kernel and the total error. In both regions, the convergence towards the fixed point is exponential, while at the critical point becomes polynomial. We provide a non-perturbative analytical theory to explain the transition via a restricted Haar ensemble at late time, when the output state approaches the steady state. Via mapping the Hessian to an effective Hamiltonian, we also identify a linearly vanishing gap at the transition point. Compared with the linear loss function, we show that a quadratic loss function within the frozen-error dynamics enables a speedup in the training convergence. The theory findings are verified experimentally on IBM quantum devices.
理解量子神经网络的训练动力学是量子信息科学中的一项基本任务,在物理、化学和机器学习领域具有广泛影响。在这项工作中,我们表明具有二次损失函数的量子神经网络的晚期训练动力学可以用广义洛特卡 - 沃尔泰拉方程来描述,从而导致动力学中的跨临界分岔转变。当损失函数的目标值从上方越过最小可实现值到下方时,动力学从冻结核动力学演变为冻结误差动力学,显示出量子神经切线核与总误差之间的对偶性。在这两个区域中,向不动点的收敛都是指数型的,而在临界点则变为多项式型。我们提供了一种非微扰分析理论,以解释在晚期输出态接近稳态时通过受限哈尔系综的转变。通过将海森矩阵映射到有效哈密顿量,我们还在转变点处识别出一个线性消失的能隙。与线性损失函数相比,我们表明在冻结误差动力学中的二次损失函数能够加快训练收敛速度。理论结果在IBM量子设备上得到了实验验证。