School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, H-1117, Hungary.
Sci Rep. 2019 Sep 3;9(1):12679. doi: 10.1038/s41598-019-48892-w.
Gate-based quantum computations represent an essential to realize near-term quantum computer architectures. A gate-model quantum neural network (QNN) is a QNN implemented on a gate-model quantum computer, realized via a set of unitaries with associated gate parameters. Here, we define a training optimization procedure for gate-model QNNs. By deriving the environmental attributes of the gate-model quantum network, we prove the constraint-based learning models. We show that the optimal learning procedures are different if side information is available in different directions, and if side information is accessible about the previous running sequences of the gate-model QNN. The results are particularly convenient for gate-model quantum computer implementations.
基于门的量子计算是实现近期量子计算机体系结构的关键。门模型量子神经网络(QNN)是在门模型量子计算机上实现的 QNN,通过一组具有相关门参数的幺正来实现。在这里,我们定义了一种门模型 QNN 的训练优化程序。通过推导出门模型量子网络的环境属性,我们证明了基于约束的学习模型。我们表明,如果在不同方向上可用侧信息,或者如果可以访问关于门模型 QNN 的先前运行序列的侧信息,则最佳学习过程是不同的。这些结果对于门模型量子计算机的实现特别方便。