Suppr超能文献

动态网络曲率分析揭示肉瘤中潜在的新治疗靶点。

Dynamic network curvature analysis of gene expression reveals novel potential therapeutic targets in sarcoma.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.

Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.

出版信息

Sci Rep. 2024 Jan 4;14(1):488. doi: 10.1038/s41598-023-49930-4.

Abstract

Network properties account for the complex relationship between genes, making it easier to identify complex patterns in their interactions. In this work, we leveraged these network properties for dual purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best concordance with histological subtypes, validated against three state-of-the-art methods. Second, to identify molecular targets that would be missed by more conventional methods of analysis, we applied a novel unsupervised method to cluster gene interactomes represented as networks in pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on a discrete notion of curvature. This provides a measure of the functional association among genes in the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we found non-trivial gene associations not previously identified.

摘要

网络特性解释了基因之间的复杂关系,使我们更容易识别它们相互作用中的复杂模式。在这项工作中,我们利用这些网络特性实现了双重目的。首先,我们使用 Wasserstein 距离作为相似性度量,利用网络信息流对儿科肉瘤肿瘤进行聚类。我们证明了这种方法与组织学亚型具有最佳的一致性,这一点通过三种最先进的方法得到了验证。其次,为了识别更传统的分析方法可能错过的分子靶标,我们应用了一种新的无监督方法对儿科肉瘤中表示为网络的基因互作组进行聚类。将 RNA-Seq 数据映射到蛋白质水平的互作组,构建加权网络,然后对其进行非欧几里得、多尺度几何处理,以离散曲率的概念为中心。这提供了一种在连接性背景下衡量基因之间功能关联的方法。为了证实该方法的有效性,层次聚类揭示了尤文肉瘤中 EWSR1-FLI1 融合的特征。此外,通过评估曲率变化量化的虚拟边缘扰动和模拟基因敲除的影响,我们发现了以前未识别的非平凡基因关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/799c/10766622/317fcc410cd9/41598_2023_49930_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验