Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, US.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, US.
Nat Comput Sci. 2023 Dec;3(12):1045-1055. doi: 10.1038/s43588-023-00563-7. Epub 2023 Dec 15.
Transition state search is key in chemistry for elucidating reaction mechanisms and exploring reaction networks. The search for accurate 3D transition state structures, however, requires numerous computationally intensive quantum chemistry calculations due to the complexity of potential energy surfaces. Here we developed an object-aware SE(3) equivariant diffusion model that satisfies all physical symmetries and constraints for generating sets of structures-reactant, transition state and product-in an elementary reaction. Provided reactant and product, this model generates a transition state structure in seconds instead of hours, which is typically required when performing quantum-chemistry-based optimizations. The generated transition state structures achieve a median of 0.08 Å root mean square deviation compared to the true transition state. With a confidence scoring model for uncertainty quantification, we approach an accuracy required for reaction barrier estimation (2.6 kcal mol) by only performing quantum chemistry-based optimizations on 14% of the most challenging reactions. We envision usefulness for our approach in constructing large reaction networks with unknown mechanisms.
过渡态搜索是化学中阐明反应机制和探索反应网络的关键。然而,由于势能面的复杂性,搜索准确的 3D 过渡态结构需要进行大量计算密集型的量子化学计算。在这里,我们开发了一种具有对象感知的 SE(3)等变扩散模型,该模型满足生成基本反应中反应物、过渡态和产物结构集的所有物理对称性和约束。给定反应物和产物,该模型可以在几秒钟内生成过渡态结构,而不是通常在进行基于量子化学的优化时需要的几个小时。生成的过渡态结构与真实过渡态相比的均方根偏差中位数为 0.08Å。通过对不确定性进行量化的置信度评分模型,我们仅对 14%最具挑战性的反应执行基于量子化学的优化,就达到了反应势垒估计所需的精度(2.6kcal/mol)。我们设想我们的方法在构建具有未知机制的大型反应网络方面具有实用性。