Suppr超能文献

基于深度学习势进行过渡态优化的从头算分析海森矩阵

Analytical ab initio hessian from a deep learning potential for transition state optimization.

作者信息

Yuan Eric C-Y, Kumar Anup, Guan Xingyi, Hermes Eric D, Rosen Andrew S, Zádor Judit, Head-Gordon Teresa, Blau Samuel M

机构信息

Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, CA, USA.

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nat Commun. 2024 Oct 14;15(1):8865. doi: 10.1038/s41467-024-52481-5.

Abstract

Identifying transition states-saddle points on the potential energy surface connecting reactant and product minima-is central to predicting kinetic barriers and understanding chemical reaction mechanisms. In this work, we train a fully differentiable equivariant neural network potential, NewtonNet, on thousands of organic reactions and derive the analytical Hessians. By reducing the computational cost by several orders of magnitude relative to the density functional theory (DFT) ab initio source, we can afford to use the learned Hessians at every step for the saddle point optimizations. We show that the full machine learned (ML) Hessian robustly finds the transition states of 240 unseen organic reactions, even when the quality of the initial guess structures are degraded, while reducing the number of optimization steps to convergence by 2-3× compared to the quasi-Newton DFT and ML methods. All data generation, NewtonNet model, and ML transition state finding methods are available in an automated workflow.

摘要

识别过渡态——势能面上连接反应物和产物极小值的鞍点——对于预测动力学势垒和理解化学反应机理至关重要。在这项工作中,我们在数千个有机反应上训练了一个完全可微的等变神经网络势函数NewtonNet,并推导了解析海森矩阵。通过相对于密度泛函理论(DFT)从头算源将计算成本降低几个数量级,我们能够在鞍点优化的每一步使用学习到的海森矩阵。我们表明,完整的机器学习(ML)海森矩阵能够稳健地找到240个未见有机反应的过渡态,即使初始猜测结构的质量下降,同时与拟牛顿DFT和ML方法相比,将收敛所需的优化步数减少了2 - 3倍。所有数据生成、NewtonNet模型和ML过渡态寻找方法都可在一个自动化工作流程中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6621/11473838/98c2924a5856/41467_2024_52481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验