Suppr超能文献

利用深度学习生成异构反应的过渡态。

Generating transition states of isomerization reactions with deep learning.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Phys Chem Chem Phys. 2020 Oct 28;22(41):23618-23626. doi: 10.1039/d0cp04670a.

Abstract

Lack of quality data and difficulty generating these data hinder quantitative understanding of reaction kinetics. Specifically, conventional methods to generate transition state structures are deficient in speed, accuracy, or scope. We describe a novel method to generate three-dimensional transition state structures for isomerization reactions using reactant and product geometries. Our approach relies on a graph neural network to predict the transition state distance matrix and a least squares optimization to reconstruct the coordinates based on which entries of the distance matrix the model perceives to be important. We feed the structures generated by our algorithm through a rigorous quantum mechanics workflow to ensure the predicted transition state corresponds to the ground truth reactant and product. In both generating viable geometries and predicting accurate transition states, our method achieves excellent results. We envision workflows like this, which combine neural networks and quantum chemistry calculations, will become the preferred methods for computing chemical reactions.

摘要

缺乏高质量的数据和生成这些数据的困难阻碍了对反应动力学的定量理解。具体来说,传统生成过渡态结构的方法在速度、准确性或范围上存在不足。我们描述了一种使用反应物和产物几何形状生成异构化反应的三维过渡态结构的新方法。我们的方法依赖于图神经网络来预测过渡态距离矩阵,并通过最小二乘优化来根据模型认为重要的距离矩阵条目重建坐标。我们通过严格的量子力学工作流程来检查我们的算法生成的结构,以确保预测的过渡态与真实的反应物和产物相对应。在生成可行的几何形状和预测准确的过渡态方面,我们的方法都取得了优异的结果。我们设想这种结合神经网络和量子化学计算的工作流程将成为计算化学反应的首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验