Suppr超能文献

不同失配负波幅表征在预测意识障碍患者意识水平方面的准确性。

The accuracy of different mismatch negativity amplitude representations in predicting the levels of consciousness in patients with disorders of consciousness.

作者信息

Zhang Kang, Li Kexin, Zhang Chunyun, Li Xiaodong, Han Shuai, Lv Chuanxiang, Xie Jingwei, Xia Xiaoyu, Bie Li, Guo Yongkun

机构信息

Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.

Department of Endocrinology, Jilin Province People's Hospital, Changchun, China.

出版信息

Front Neurosci. 2023 Dec 21;17:1293798. doi: 10.3389/fnins.2023.1293798. eCollection 2023.

Abstract

INTRODUCTION

The mismatch negativity (MMN) index has been used to evaluate consciousness levels in patients with disorders of consciousness (DoC). Indeed, MMN has been validated for the diagnosis of vegetative state/unresponsive wakefulness syndrome (/UWS) and minimally conscious state (MCS). In this study, we evaluated the accuracy of different MMN amplitude representations in predicting levels of consciousness.

METHODS

Task-state electroencephalography (EEG) data were obtained from 67 patients with DoC (35 and 32 MCS). We performed a microstate analysis of the task-state EEG and used four different representations (the peak amplitude of MMN at electrode Fz (Peak), the average amplitude within a time window -25- 25 ms entered on the latency of peak MMN component (Avg for peak ± 25 ms), the average amplitude of averaged difference wave for 100-250 ms (Avg for 100-250 ms), and the average amplitude difference between the standard stimulus ("S") and the deviant stimulus ("D") at the time corresponding to Microstate 1 (MS1) (Avg for MS1) of the MMN amplitude to predict the levels of consciousness.

RESULTS

The results showed that among the four microstates clustered, MS1 showed statistical significance in terms of time proportion during the 100-250 ms period. Our results confirmed the activation patterns of MMN through functional connectivity analysis. Among the four MMN amplitude representations, the microstate-based representation showed the highest accuracy in distinguishing different levels of consciousness in patients with DoC (AUC = 0.89).

CONCLUSION

We discovered a prediction model based on microstate calculation of MMN amplitude can accurately distinguish between MCS and states. And the functional connection of the MS1 is consistent with the activation mode of MMN.

摘要

引言

失匹配负波(MMN)指数已被用于评估意识障碍(DoC)患者的意识水平。事实上,MMN已被验证可用于诊断植物状态/无反应觉醒综合征(VS/UWS)和最低意识状态(MCS)。在本研究中,我们评估了不同MMN振幅表示法在预测意识水平方面的准确性。

方法

从67例DoC患者(35例VS/UWS和32例MCS)中获取任务态脑电图(EEG)数据。我们对任务态EEG进行了微状态分析,并使用四种不同的表示法(电极Fz处MMN的峰值振幅(Peak)、在MMN峰值成分潜伏期进入的-25至25毫秒时间窗口内的平均振幅(峰值±25毫秒的Avg)、100至250毫秒平均差异波的平均振幅(100至250毫秒的Avg)以及在与MMN振幅的微状态1(MS1)相对应的时间点标准刺激(“S”)和偏差刺激(“D”)之间的平均振幅差异(MS1的Avg))来预测意识水平。

结果

结果表明,在聚类的四个微状态中,MS1在100至250毫秒期间的时间比例方面具有统计学意义。我们的结果通过功能连接分析证实了MMN的激活模式。在四种MMN振幅表示法中,基于微状态的表示法在区分DoC患者的不同意识水平方面显示出最高的准确性(AUC = 0.89)。

结论

我们发现基于MMN振幅微状态计算的预测模型可以准确区分MCS和VS/UWS状态。并且MS1的功能连接与MMN的激活模式一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eeb/10764429/8443df0fabd1/fnins-17-1293798-g001.jpg

相似文献

2
Mismatch Negativity and P300 in the Diagnosis and Prognostic Assessment of Coma and Other Disorders of Consciousness.
Neurocrit Care. 2025 Feb;42(1):185-195. doi: 10.1007/s12028-024-02058-3. Epub 2024 Jul 24.
3
The temporal dynamics of Large-Scale brain network changes in disorders of consciousness: A Microstate-Based study.
CNS Neurosci Ther. 2023 Jan;29(1):296-305. doi: 10.1111/cns.14003. Epub 2022 Nov 1.
4
Consciousness Indexing and Outcome Prediction with Resting-State EEG in Severe Disorders of Consciousness.
Brain Topogr. 2018 Sep;31(5):848-862. doi: 10.1007/s10548-018-0643-x. Epub 2018 Apr 17.
5
6
Mismatch negativity predicts recovery from the vegetative state.
Clin Neurophysiol. 2007 Mar;118(3):597-605. doi: 10.1016/j.clinph.2006.11.020. Epub 2007 Jan 18.
7
Mismatch negativity to the patient's own name in chronic disorders of consciousness.
Neurosci Lett. 2008 Dec 19;448(1):24-8. doi: 10.1016/j.neulet.2008.10.029. Epub 2008 Oct 14.
8
Can Music Influence Patients With Disorders of Consciousness? An Event-Related Potential Study.
Front Neurosci. 2021 Apr 9;15:596636. doi: 10.3389/fnins.2021.596636. eCollection 2021.
9
Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness.
Neurosci Bull. 2018 Aug;34(4):700-708. doi: 10.1007/s12264-018-0260-4. Epub 2018 Jul 20.

本文引用的文献

1
The temporal dynamics of Large-Scale brain network changes in disorders of consciousness: A Microstate-Based study.
CNS Neurosci Ther. 2023 Jan;29(1):296-305. doi: 10.1111/cns.14003. Epub 2022 Nov 1.
2
Preliminary Study of Vagus Nerve Magnetic Modulation in Patients with Prolonged Disorders of Consciousness.
Neuropsychiatr Dis Treat. 2022 Sep 25;18:2171-2179. doi: 10.2147/NDT.S381681. eCollection 2022.
3
EEG Microstate-Specific Functional Connectivity and Stroke-Related Alterations in Brain Dynamics.
Front Neurosci. 2022 May 11;16:848737. doi: 10.3389/fnins.2022.848737. eCollection 2022.
4
The neuroethics of disorders of consciousness: a brief history of evolving ideas.
Brain. 2021 Dec 16;144(11):3291-3310. doi: 10.1093/brain/awab290.
5
Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies.
Nat Rev Neurol. 2021 Mar;17(3):135-156. doi: 10.1038/s41582-020-00428-x. Epub 2020 Dec 14.
6
Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function.
Neuroimage. 2021 Jan 1;224:117429. doi: 10.1016/j.neuroimage.2020.117429. Epub 2020 Oct 7.
7
Making Sense of Mismatch Negativity.
Front Psychiatry. 2020 Jun 11;11:468. doi: 10.3389/fpsyt.2020.00468. eCollection 2020.
8
EEG microstates are a candidate endophenotype for schizophrenia.
Nat Commun. 2020 Jun 18;11(1):3089. doi: 10.1038/s41467-020-16914-1.
9
Assessing the depth of language processing in patients with disorders of consciousness.
Nat Neurosci. 2020 Jun;23(6):761-770. doi: 10.1038/s41593-020-0639-1. Epub 2020 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验