Zhang Kang, Li Kexin, Zhang Chunyun, Li Xiaodong, Han Shuai, Lv Chuanxiang, Xie Jingwei, Xia Xiaoyu, Bie Li, Guo Yongkun
Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
Department of Endocrinology, Jilin Province People's Hospital, Changchun, China.
Front Neurosci. 2023 Dec 21;17:1293798. doi: 10.3389/fnins.2023.1293798. eCollection 2023.
The mismatch negativity (MMN) index has been used to evaluate consciousness levels in patients with disorders of consciousness (DoC). Indeed, MMN has been validated for the diagnosis of vegetative state/unresponsive wakefulness syndrome (/UWS) and minimally conscious state (MCS). In this study, we evaluated the accuracy of different MMN amplitude representations in predicting levels of consciousness.
Task-state electroencephalography (EEG) data were obtained from 67 patients with DoC (35 and 32 MCS). We performed a microstate analysis of the task-state EEG and used four different representations (the peak amplitude of MMN at electrode Fz (Peak), the average amplitude within a time window -25- 25 ms entered on the latency of peak MMN component (Avg for peak ± 25 ms), the average amplitude of averaged difference wave for 100-250 ms (Avg for 100-250 ms), and the average amplitude difference between the standard stimulus ("S") and the deviant stimulus ("D") at the time corresponding to Microstate 1 (MS1) (Avg for MS1) of the MMN amplitude to predict the levels of consciousness.
The results showed that among the four microstates clustered, MS1 showed statistical significance in terms of time proportion during the 100-250 ms period. Our results confirmed the activation patterns of MMN through functional connectivity analysis. Among the four MMN amplitude representations, the microstate-based representation showed the highest accuracy in distinguishing different levels of consciousness in patients with DoC (AUC = 0.89).
We discovered a prediction model based on microstate calculation of MMN amplitude can accurately distinguish between MCS and states. And the functional connection of the MS1 is consistent with the activation mode of MMN.
失匹配负波(MMN)指数已被用于评估意识障碍(DoC)患者的意识水平。事实上,MMN已被验证可用于诊断植物状态/无反应觉醒综合征(VS/UWS)和最低意识状态(MCS)。在本研究中,我们评估了不同MMN振幅表示法在预测意识水平方面的准确性。
从67例DoC患者(35例VS/UWS和32例MCS)中获取任务态脑电图(EEG)数据。我们对任务态EEG进行了微状态分析,并使用四种不同的表示法(电极Fz处MMN的峰值振幅(Peak)、在MMN峰值成分潜伏期进入的-25至25毫秒时间窗口内的平均振幅(峰值±25毫秒的Avg)、100至250毫秒平均差异波的平均振幅(100至250毫秒的Avg)以及在与MMN振幅的微状态1(MS1)相对应的时间点标准刺激(“S”)和偏差刺激(“D”)之间的平均振幅差异(MS1的Avg))来预测意识水平。
结果表明,在聚类的四个微状态中,MS1在100至250毫秒期间的时间比例方面具有统计学意义。我们的结果通过功能连接分析证实了MMN的激活模式。在四种MMN振幅表示法中,基于微状态的表示法在区分DoC患者的不同意识水平方面显示出最高的准确性(AUC = 0.89)。
我们发现基于MMN振幅微状态计算的预测模型可以准确区分MCS和VS/UWS状态。并且MS1的功能连接与MMN的激活模式一致。