Department of Biology, McGill University, Montreal, QC, Canada.
Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
Front Neural Circuits. 2023 Dec 19;17:1297643. doi: 10.3389/fncir.2023.1297643. eCollection 2023.
Parvalbumin (PV) neurons play an integral role in regulating neural dynamics and plasticity. Therefore, understanding the factors that regulate PV expression is important for revealing modulators of brain function. While the contribution of PV neurons to neural processes has been studied in mammals, relatively little is known about PV function in non-mammalian species, and discerning similarities in the regulation of PV across species can provide insight into evolutionary conservation in the role of PV neurons. Here we investigated factors that affect the abundance of PV in PV neurons in sensory and motor circuits of songbirds and rodents. In particular, we examined the degree to which perineuronal nets (PNNs), extracellular matrices that preferentially surround PV neurons, modulate PV abundance as well as how the relationship between PV and PNN expression differs across brain areas and species and changes over development. We generally found that cortical PV neurons that are surrounded by PNNs (PV+PNN neurons) are more enriched with PV than PV neurons without PNNs (PV-PNN neurons) across both rodents and songbirds. Interestingly, the relationship between PV and PNN expression in the vocal portion of the basal ganglia of songbirds (Area X) differed from that in other areas, with PV+PNN neurons having lower PV expression compared to PV-PNN neurons. These relationships remained consistent across development in vocal motor circuits of the songbird brain. Finally, we discovered a causal contribution of PNNs to PV expression in songbirds because degradation of PNNs led to a diminution of PV expression in PV neurons. These findings reveal a conserved relationship between PV and PNN expression in sensory and motor cortices and across songbirds and rodents and suggest that PV neurons could modulate plasticity and neural dynamics in similar ways across songbirds and rodents.
钙结合蛋白(PV)神经元在调节神经动力学和可塑性方面起着不可或缺的作用。因此,了解调节 PV 表达的因素对于揭示大脑功能的调节剂很重要。虽然 PV 神经元对神经过程的贡献在哺乳动物中已经得到了研究,但在非哺乳动物物种中,PV 的功能相对较少,并且在物种之间辨别 PV 调节的相似性可以深入了解 PV 神经元作用的进化保守性。在这里,我们研究了影响感官和运动回路中鸣禽和啮齿动物的 PV 神经元中 PV 丰度的因素。特别是,我们检查了周围神经网(PNN),即优先包围 PV 神经元的细胞外基质,调节 PV 丰度的程度,以及 PV 与 PNN 表达之间的关系如何在大脑区域和物种之间存在差异,并随着发育而变化。我们通常发现,在啮齿动物和鸣禽中,被 PNN 包围的皮质 PV 神经元(PV+PNN 神经元)比没有 PNN 包围的 PV 神经元(PV-PNN 神经元)更富含 PV。有趣的是,鸣禽基底神经节发声部分(Area X)中 PV 与 PNN 表达之间的关系与其他区域不同,与 PV-PNN 神经元相比,PV+PNN 神经元的 PV 表达较低。这些关系在鸣禽大脑发声运动回路的发育过程中保持一致。最后,我们发现 PNN 对鸣禽中 PV 表达有因果贡献,因为 PNN 的降解导致 PV 神经元中 PV 表达减少。这些发现揭示了感觉和运动皮质以及鸣禽和啮齿动物之间 PV 和 PNN 表达之间的保守关系,并表明 PV 神经元可以以类似的方式在鸣禽和啮齿动物中调节可塑性和神经动力学。