Division of General Surgery, Bariatric Unit, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, 6, Weizman St., Tel Aviv, Israel.
Obes Surg. 2024 Feb;34(2):330-336. doi: 10.1007/s11695-023-07043-x. Epub 2024 Jan 5.
Sleeve gastrectomy (SG) is the most common metabolic and bariatric procedure performed. Leveraging artificial intelligence (AI) for automated real-time data structuring and annotations of surgical videos has immense potential of clinical applications. This study presents initial real-world implementation of AI-based computer vision model in sleeve gastrectomy (SG) and external validation of accuracy of safety milestone annotations.
A retrospective single-center study of 49 consecutive SG videos was captured and analyzed by the AI platform (December 2020-August 2023). A bariatric surgeon viewed all videos and assessed safety milestones adherence, compared to the AI annotations. Patients' data were retrieved from the bariatric unit registry.
SG total duration was 47.5 min (interquartile range 36-64). Main steps included preparation (12.2%), dissection of the greater curvature (30.8%), gastric transection (28.5%), specimen extraction (7.2%), and final inspection (14.4%). Out of body time comprised 6.9% of the total video. Safety milestones components and AI-surgeon agreements included the following: bougie insertion (100%), distance from pylorus ≥ 2 cm (100%), parallel to lesser curvature (98%), fundus mobilization (100%), and distance from esophagus ≥ 1 cm (true-100%, false-13.6%; kappa coefficient 0.2, p = 0.006). Intraoperative complications included notable hemorrhage (n = 4) and parenchymal injury (n = 1).
The AI model provides a fully automated SG video analysis. Outcomes suggest its accuracy in four of five safety milestone annotations. This data is valuable, as it reflects objective performance measures which can help us improve the surgical quality and efficiency of SG. Larger cohorts will enable SG standardization and clinical correlations with outcomes, aiming to improve patients' safety.
袖状胃切除术(SG)是最常见的代谢和减重手术。利用人工智能(AI)对手术视频进行自动实时数据结构和注释具有巨大的临床应用潜力。本研究首次展示了基于人工智能的计算机视觉模型在袖状胃切除术(SG)中的实际应用,并对安全里程碑注释的准确性进行了外部验证。
这是一项回顾性单中心研究,纳入了 2020 年 12 月至 2023 年 8 月期间 49 例连续 SG 视频,由 AI 平台进行分析。一名减重外科医生观看了所有视频,并评估了 AI 注释与安全里程碑之间的一致性。患者数据从减重外科登记处获取。
SG 的总时长为 47.5 分钟(四分位距 36-64 分钟)。主要步骤包括准备(12.2%)、胃大弯游离(30.8%)、胃切割(28.5%)、标本取出(7.2%)和最后的检查(14.4%)。体外操作时间占视频总时长的 6.9%。安全里程碑的组成部分和 AI-外科医生的一致性包括以下内容:胃管插入(100%)、幽门距离≥2cm(100%)、与小弯平行(98%)、胃底游离(100%)和食管距离≥1cm(真阳性-100%,假阳性-13.6%;kappa 系数 0.2,p=0.006)。术中并发症包括明显出血(n=4)和实质损伤(n=1)。
AI 模型提供了一种完全自动化的 SG 视频分析。结果表明,该模型在五个安全里程碑中的四个注释上具有较高的准确性。这些数据非常有价值,因为它反映了客观的绩效指标,可以帮助我们提高 SG 的手术质量和效率。更大的队列将能够使 SG 标准化,并与结果进行临床相关性分析,以提高患者的安全性。