Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
Brief Bioinform. 2023 Nov 22;25(1). doi: 10.1093/bib/bbad495.
The enzyme-linked immunosorbent spot (ELISpot) assay is a powerful in vitro immunoassay that enables cost-effective quantification of antigen-specific T-cell reactivity. It is used widely in the context of cancer and infectious diseases to validate the immunogenicity of predicted epitopes. While technological advances have kept pace with the demand for increased throughput, efforts to increase scale are bottlenecked by current assay design and deconvolution methods, which have remained largely unchanged. Current methods for designing pooled ELISpot experiments offer limited flexibility of assay parameters, lack support for high-throughput scenarios and do not consider peptide identity during pool assignment. We introduce the ACE Configurator for ELISpot (ACE) to address these gaps. ACE generates optimized peptide-pool assignments from highly customizable user inputs and handles the deconvolution of positive peptides using assay readouts. In this study, we present a novel sequence-aware pooling strategy, powered by a fine-tuned ESM-2 model that groups immunologically similar peptides, reducing the number of false positives and subsequent confirmatory assays compared to existing combinatorial approaches. To validate ACE's performance on real-world datasets, we conducted a comprehensive benchmark study, contextualizing design choices with their impact on prediction quality. Our results demonstrate ACE's capacity to further increase precision of identified immunogenic peptides, directly optimizing experimental efficiency. ACE is freely available as an executable with a graphical user interface and command-line interfaces at https://github.com/pirl-unc/ace.
酶联免疫斑点(ELISpot)分析是一种强大的体外免疫分析方法,能够以经济有效的方式定量检测抗原特异性 T 细胞反应。它在癌症和传染病的背景下被广泛用于验证预测表位的免疫原性。虽然技术进步跟上了提高通量的需求,但由于当前的测定设计和去卷积方法仍然基本不变,增加规模的努力受到了限制。目前用于设计组合 ELISpot 实验的方法提供了有限的测定参数灵活性,缺乏对高通量场景的支持,并且在池分配期间不考虑肽的身份。我们引入了用于 ELISpot 的 ACE 配置器(ACE)来解决这些差距。ACE 从高度可定制的用户输入中生成优化的肽池分配,并使用测定读数处理阳性肽的去卷积。在这项研究中,我们提出了一种新的基于序列的分组策略,该策略由经过微调的 ESM-2 模型提供支持,该模型将免疫上相似的肽进行分组,与现有的组合方法相比,减少了假阳性的数量和随后的确认性检测。为了验证 ACE 在真实数据集上的性能,我们进行了一项全面的基准研究,根据其对预测质量的影响来确定设计选择。我们的结果表明 ACE 有能力进一步提高鉴定免疫原性肽的精度,直接优化实验效率。ACE 可作为带有图形用户界面和命令行界面的可执行文件在 https://github.com/pirl-unc/ace 上免费获得。